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 A pixel in remotely sensed hyperspectral imagery is typically a mixture of 

multiple electromagnetic radiances from various ground cover materials. Spectral 

unmixing is a quantitative analysis procedure used to recognize constituent ground cover 

materials (or endmembers) and obtain their mixing proportions (or abundances) from a 

mixed pixel. The abundances are typically estimated using the least squares estimation 

(LSE) method based on the linear mixture model (LMM).   

This dissertation provides a complete investigation on how the use of appropriate 

features can improve the LSE of endmember abundances using remotely sensed 

hyperspectral signals. The dissertation shows how features based on signal classification 

approaches, such as discrete wavelet transform (DWT), outperform features based on 

conventional signal representation methods for dimensionality reduction, such as 
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principal component analysis (PCA), for the LSE of endmember abundances. Both 

experimental and theoretical analyses are reported in the dissertation.  

A DWT-based linear unmixing system is designed specially for the abundance 

estimation. The system utilizes the DWT as a pre-processing step for the feature 

extraction. Based on DWT-based features, the system utilizes the constrained LSE for the 

abundance estimation. Experimental results show that the use of DWT-based features 

reduces the abundance estimation deviation by 30-50% on average, as compared to the 

use of original hyperspectral signals or conventional PCA-based features.  

Based on the LMM and the LSE method, a series of theoretical analyses are 

derived to reveal the fundamental reasons why the use of the appropriate features, such as 

DWT-based features, can improve the LSE of endmember abundances. Under reasonable 

assumptions, the dissertation derives a generalized mathematical relationship between the 

abundance estimation error and the endmember separabilty. It is proven that the 

abundance estimation error can be reduced through increasing the endmember 

separability. The use of DWT-based features provides a potential to increase the 

endmember separability, and consequently improves the LSE of endmember abundances. 

The stability of the LSE of endmember abundances is also analyzed using the 

concept of the condition number. Analysis results show that the use of DWT-based 

features not only improves the LSE of endmember abundances, but also improves the 

LSE stability. 
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1 

CHAPTER  I 
 

INTRODUCTION 
 
 

1.1. Study Background of The Dissertation 

One of the important applications of the remote sensing technology is target 

detection and classification. The airborne and spaceborne remote sensors allow us to 

rapidly acquire the large area information of the Earth’s surface with a relatively low 

cost. This great advantage makes it become reality to implement the target detection and 

classification in a large ground cover range. The early remote sensing applications 

focused on the use of spatial information, i.e., imagery, because it was the easiest and the 

most direct information for people to utilize. However, later researchers realized the 

substantial limitations of using only spatial information, particularly the limitation of 

spatial resolution. Using spatial information for target detection and classification is to 

investigate spatial relationships among objects in images. In order to identify an object on 

the ground, a remote sensing image has to have enough high spatial resolution, which 

means a remote sensor has to have enough high spatial resolution. For example, to 

recognize a building on the ground directly using a remote sensing image, it would 

require a remote sensor with a spatial resolution on the order of one meter. To recognize 

certain vegetation in agriculture applications, it would require a spatial resolution on the 

order of one centimeter. Unfortunately, however, the improvement of the spatial 

resolution of a remote sensor could be one of the most expensive factors in remote 



www.manaraa.com

2 

 

sensing, due to the fact that it is very expensive to manufacture and maintain a remote 

sensor with a very high spatial resolution. As a result, remote sensing data acquired by 

such a high spatial resolution sensor could be too expensive to most users. Moreover, the 

amount of data could be too huge to be manipulated easily, because for the same size of 

ground cover area, higher spatial resolution data corresponds to a larger image size. 

These inevitable problems contradict the great advantages of economy and efficiency 

using the remote sensing technology. Hence, only utilizing the spatial information 

acquired by remote sensors severely restricts the extensive applications of the remote 

sensing technology. 

Realizing the fact that optical remote sensing signals are typically electromagnetic 

radiance spectra of materials on the surface of the Earth received by remote sensors, 

researchers began to concentrate in using spectral information in remote sensing signals, 

instead of only using spatial information, for target detection and classification. 

Depending upon the electromagnetic energy sources, the remote sensing is typically 

divided into two broad categories: passive and active remote sensing. A passive remote 

sensing is such that the electromagnetic energy stems from a natural source such as the 

Sun. Many typical remote sensor systems, such as NASA’s Landsat Multispectral 

Scanner System (MSS) and the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) system, fall into the category of the passive remote sensing. An active remote 

sensing is such that a remote sensor itself provides the electromagnetic energy sources, 

instead of using the natural source. The synthetic aperture radar (SAR) system is an 
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example of the active remote sensing [1, 2]. For this study, we are focusing on the 

passive remote sensing. 

Typically, the number of spectral bands of remote sensors determines the amount 

of spectral information that remote sensors can acquire. Early remote sensors only have 

several spectral bands, and thus limited spectral information can be obtained from such 

remote sensors. These remote sensors are typically called multispectral sensors. For 

example, the first Landsat MSS launched in July 1972 had 4 spectral bands with 80m 

spatial resolution and a 6-bit data system. The current Landsat 7 system launched in April 

1999 has 7 spectral bands with 30m spatial resolution and an 8-bit data system. The 

French Système pour l'Observation de la Terre (SPOT) Haute Résolution Visible (HRV) 

system launched in February 1986, January 1990 and September 1993 had 3 spectral 

bands with 20m spatial resolution and an 8-bit data system, and 1 panchromatic band 

with 10m resolution and an 8-bit data system [1, 2]. With the ongoing development of the 

remote sensor technology, currently many remote sensors can operate with more than one 

hundred spectral bands. These remote sensors are typically called hyperspectral sensors. 

For example, the airborne Hyperspectral Digital Image Collection Experiment (HYDICE) 

system had 210 spectral bands with wavelengths from 400 to 2500nm. The AVIRIS 

system had 224 spectral bands with wavelengths from 400 to 2500nm. The spaceborne 

Hyperion system recently launched in November 2000 had 220 spectral bands with 

wavelengths from 400 to 2500nm and 30m spatial resolution. Compared to multispectral 

signals, hyperspectral remote sensing signals include much more spectral information, 

and are able to measure more detailed electromagnetic radiance characteristics of 
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materials. Thus, using hyperspectral signals provide a great potential for target detection 

and classification using the remote sensing technology.   

Using spectral information for target detection and classification is to investigate 

electromagnetic radiance characteristics of materials. It is possible because of the fact 

that different materials have their own electromagnetic reflectance characteristics. That 

is, target materials can be identified via analyzing their spectral characteristics. Figure 1.1 

shows an example of HYDICE image and corresponding hyperspectral curves. The 

HYDICE data were provided courtesy of the Spectral Information Technology 

Applications Center (SITAC) for our previous research [3-6], funded by the 

Hyperspectral Algorithms Research Center (HyMARC) at the Department of Energy 

(DOE) Remote Sensing Lab in Nevada. The image shown in Figure 1.1(a) is a pseudo-

color RGB image. Images from three spectral bands (band 60, band 35 and band 15, lying 

in the near infrared, red and green regions, respectively) are used as red (R), green (G) 

and blue (B) channels to form the pseudo-color image. For a pixel in the HYDICE image, 

a corresponding hyperspectral curve can be formed by connecting samples of the pixel at 

each spectral band. That is, HYDICE system has 210 spectral bands and the 

hyperspectral curve of the HYDICE consists of 210 samples. Figure 1.1(b) shows four 

different hyperspectral curves of the HYDICE. These curves represent electromagnetic 

radiance of four different ground cover materials: car, tree, roof and road. It can be seen 

that these materials have their own electromagnetic reflectance characteristics. When 

using the spectral information for target detection and classification, it is not necessary to 

have pixels with a high spatial resolution, because the recognition of targets is based on 
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the electromagnetic radiance characteristics of the target materials. Thus, it is possible to 

implement a target detection and classification system using remote sensing data with 

low spatial resolution, which greatly degrades the limitation requiring high spatial 

resolution sensors. It is this advantage of using spectral information that leads to the use 

of hyperspectral remote sensing technology for a large variety of target detection and 

classification applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1. (a) HYDICE image; and (b) hyperspectral electromagnetic  

radiance signals of HYDICE. 
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Unfortunately, however, the problem of the limited spatial resolution still exists 

even when using spectral information for target detection and classification. In the target 

detection and classification problem, it is typically assumed that a pixel in a remotely 

sensed image represents a certain ground cover material, and each pixel can be uniquely 

assigned to a ground cover class.  However, this assumption cannot be guaranteed 

because of the fact that a pixel in a remotely sensed image corresponds to a certain size of 

ground cover due to the limited spatial resolution of remote sensors. Consequently, it is 

possible that a pixel consists of several different ground cover materials. For example, 

Landsat 7 system has 30m spatial resolution, which means a pixel in the Landsat 7 image 

corresponds to a ground cover region of 30m by 30m. It is possible that the whole region 

of 30m by 30m is covered only by one certain type of ground material. However, for 

many practical cases, the region of 30m by 30m is inevitably covered by more than one 

type of material. That is, pixels in remotely sensed imagery are typically mixed pixels 

consisting of electromagnetic radiance spectra of several distinct ground cover materials. 

Note that no matter how much we improve the spatial resolution, most targets will result 

in a mixed pixel. This is due to the heterogeneous nature of most target surfaces. In other 

words, because of the heterogeneous surface, the electromagnetic radiance measured by 

remote sensors inevitably consists of radiance from multiple ground cover materials, 

which result in a mixed pixel. Therefore, question is how to implement the target 

detection and classification when a pixel’s corresponding spectrum is composed of a 

mixture of multiple materials. It becomes necessary to investigate the sub-pixel 
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information, in order to achieve a better performance of target detection and classification 

in the mixed-pixel case.  This leads to a research area referred to as spectral unmixing. 

 
 1.2. Motivation and Concerns of The Dissertation 

Spectral unmixing is generally described as a quantitative analysis procedure used 

to recognize constituent ground cover materials (or endmembers) and obtain their mixing 

proportions (or abundances) from a mixed pixel. That is, the sub-pixel information of 

endmembers and their abundances can be obtained through the spectral unmixing 

process. Therefore, the target detection and classification can be implemented at a sub-

pixel level. A simple example is the production of a herbicide map in the precision 

agriculture application, where pixels typically are a mixture of crops, weeds and soil. 

Using the spectral unmixing technique, mixing proportions of crops, weeds and soil in a 

certain area could be obtained. Based on the abundances of the weed endmember, a 

herbicide map can be produced.  

The spectral unmixing problem has caused concerns and been extensively 

investigated for the past two decades. A general analysis approach for spectral unmixing 

is first to build a mathematical model of the spectral mixture. Then based on the 

mathematical model, certain techniques are applied to implement spectral unmixing. In 

general, mathematical models for spectral unmixing are divided into two broad 

categories: linear mixture model (LMM) and nonlinear mixture models (NLMM). The 

LMM assumes that each ground cover material only produces a single radiance, and the 

mixed spectrum is a linear combination of ground cover radiance spectra. The NLMM 

takes into account the multiple radiances of the ground cover materials, and thus the 
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mixture is no longer linear. The NLMM typically has a relatively more accurate 

simulation of physical phenomena [7], but the model is usually complicated and 

application dependent [8, 9]. For example, Mustard et al. analyzed the mixture of 

materials on the lunar surface using both the LMM and the NLMM [7], and showed that 

the NLMM produced a more accurate analysis. In [8], Mustard et al. implemented a 

quantitative analysis of mineral mixture spectra using a NLMM based on the 

bidirectional reflectance spectroscopy theory [10]. In [9], Borel et al. investigated the 

vegetation and soil surfaces using a NLMM based on the radiosity method [11]. In short, 

typically there is not a simple and generic NLMM that can be utilized in various spectral 

unmixing applications. This disadvantage of the NLMM greatly limits its extensive 

application.   

In contrast, the LMM is simpler and more generic, and it has been proven 

successful in various remote sensing applications, such as geological applications [12], 

the forest studies [13-15], and the vegetation studies [16-18].  For example, Adams et al. 

utilized the LMM to determine the mineral types and abundances [12]. Using the LMM, 

Cross et al. estimated the proportions of forest covers in regions with small forest patches 

and convoluted clearance patterns [13], Gong et al. determined the forest species and 

canopy closure for forest ecological studies and forest management [14], and Hlavka et 

al. mapped forest clearcuts and monitored forest regrowth in certain areas [15]. Using the 

LMM, Smith et al. monitored vegetation covers in a large desert region [16], Quarmby et 

al. estimated crop areas at regional scales [17], and Garcia-Haro et al. estimated and 

monitored the amount of vegetation in the semi-arid area [18].  It is because of the 
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advantage of simplicity and generality that the LMM has become a dominant 

mathematical model for the spectral unmixing analysis.  

Another major reason why the LMM has been broadly accepted for the spectral 

unmixing analysis is that the linear mixture assumption allows many mature 

mathematical skills and algorithms, such as least squares estimation (LSE) [19-21], to be 

easily applied to the spectral unmixing problem. As a matter of fact, the LSE method has 

been commonly accepted as an algorithm to solve the generalized linear spectral 

unmixing problem [12-18, 22-25]. Methods like orthogonal subspace projection (OSP) 

[26] have also been investigated for addressing the LMM [27, 28, 29]. While the OSP 

method is closely related to the LSE method, there exist fundamental differences. The 

LSE method results in the abundance estimation of all underlying endmembers, but the 

OSP method is used to estimate the presence of a single target endmember.   

In general, the LMM is described using a linear equation,  

oo exAy rrr
+= ,                                                        (1.1) 

where 

T
Nyyyy ],,,[ 21 L

r
=                                                  (1.2) 

represents a mixed pixel spectrum;  

T
oMooo xxxx ],,,[ 21 L

r
=                                               (1.3) 

represents true abundances of endmembers; 

T
oNooo eeee ],,,[ 21 L

r
=                                                (1.4) 

represents a random measurement error; and  
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],,,[ 21 MaaaA r
L

rr
=                                                          (1.5) 

contains endmember spectra. Each column vector of matrix A  represents an endmember 

spectrum,  

T
iNiii aaaa ],,,[ 21 L

r
= , for Mi ,,2,1 L= .                                   (1.6) 

In equations (1.1) to (1.6), the superscript T  stands for a vector or matrix transpose; N  is 

the number of spectral bands; and M  is the number of endmembers. The LMM 

described in equation (1.1) is equivalent to the classic linear regression model (LRM) in 

the statistics field [20], where A  is referred to as the regressor variable, yr  is referred to 

as the response variable, and oxr  is referred to as the regression coefficients. The linear 

regression analysis based on the LRM is a classic statistical analysis technique. A major 

objective of the linear regression analysis is to estimate the unknown parameters oxr  in 

the LRM described in equation (1.1). An important technique to reach this objective of 

linear regression analysis is the LSE. Both the objective and the technique of linear 

regression analysis are what we need to solve the linear unmixing problem in the remote 

sensing field. Based on the LMM (or LRM), the estimation of abundances (or unknown 

parameters), oxr , using the LSE method can be described as follows: given mixed pixel 

vector yr  and endmember matrix A , obtain an optimum estimate, LSxr , of abundance 

vector oxr , such that the total error energy, 22
oo xAye rrr

−= , is minimized, where the 

symbol ⋅  stands for a vector norm operation.  
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A drawback of the LSE method is its sensitivity to the error outlier [20]. Given an 

element in the error vector oer , for example oje , if it has much greater energy than others, 

then it is defined as an error outlier. The total error energy 2
oer  is greatly affected by 

such an error outlier. Since the LSE method is to minimize the total error energy, it is 

greatly affected by the error outlier. As a result, the LSE solution, LSxr , becomes 

inaccurate. To overcome this drawback, robust approaches have been investigated [30]. 

One of them is the least median of squares (LMedS) method and has been reported in the 

spectral unmixing application [31]. Instead of minimizing the total error energy, the 

LMedS method minimizes the median of the error energy and thus could suppress the 

influence of error outliers. It has been shown that the LMedS method could produce 

reasonable estimates as long as the number of outlier data is less than half of the dataset. 

However, the fact that the LSE method is sensitive to error outliers does not degrade its 

significance, and the LSE is still the dominant approach for the linear spectral unmixing 

analysis. 

 One requirement for implementing the abundance estimation using the LSE 

method is that the number of spectral bands must be greater than the number of 

endmembers. This is called the “condition of identifiability” [23, 32], which essentially 

stems from solving the linear equation (1.1). For the linear spectral unmixing problem, 

equation (1.1) represents a set of N  equations with M  unknown variables, where N  is 

the number of spectral bands, and M  is the number of endmembers. In general, based on 

the linear equation theory, there exist three cases: i) when MN = , if the solution exists 
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then it is unique; ii) when MN < , which is called an underdetermined system, 

theoretically there exist infinite nontrivial solutions; iii) when MN > , which is called an 

overdetermined system, there does not exist an exact solution, but it is possible that there 

exists a unique LSE solution. Case i) seems perfect, but it is not the case for the linear 

spectral unmixing because of the existence of the random measurement error oer  in 

equation (1.1). Case ii) obviously is not acceptable because of the existence of infinite 

solutions. Case iii) is suitable for the linear spectral unmixing problem and leads to the 

“condition of identifiability”.  

To a certain extent, the “condition of identifiability” limits the use of 

multispectral data for the linear spectral unmixing problem. Multispectral data typically 

have only a few spectral bands. For instance, Landsat Thematic Mapper (TM) data have 7 

bands and SPOT data have 3 bands. Thus, when the number of endmembers, M , 

increases, the “condition of identifiability” no longer holds and the LSE method fails. 

One way to solve the problem is to increase the number of equations, N . For example, 

Bosdogianni et al. incorporated higher order moment characteristics into the LMM 

equation (1.1) to increase the number of equations and thus alleviate the sufferance from 

the “condition of identifiability” [33]. Another way to solve the problem is to utilize 

hyperspectral data, which typically have hundreds of spectral bands. For instance, 

HYDICE data have 210 spectral bands, AVIRIS data have 224 spectral bands and 

Hyperion data have 220 spectral bands. The problem of “condition of identifiability” 

seems easily solved by utilizing hyperspectral data. However, it is questionable that 

simply using all hyperspectral bands for linear unmixing can lead to a satisfactory result. 
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For the classification and target detection problem using hyperspectral data, it has been 

realized that classification performance can be greatly improved by using effective 

features extracted from the original hyperspectral data [5, 6, 34-36]. Naturally, the 

question is whether or not linear unmixing performance, particularly abundance 

estimation performance, can be improved by using appropriate hyperspectral features. 

Answering this question becomes a major concern of this dissertation.   

A variety of advanced techniques have been reported for the feature extraction of 

hyperspectral signals in the classification and target detection application [5, 6, 34-36]. 

For example, Jia et al. suggested a segmented principal components analysis (PCA) 

method for feature extraction and classification [34]. The method was based on the 

conventional PCA [2], but implemented the PCA on the segmented image, not the whole 

image. The useful features were extracted from principal components in each sub-image. 

The main advantage of the method was reducing the huge computational cost of the 

conventional PCA. Jimenez et al. utilized a projection pursuit method to extract features 

and reduce the dimensionality of hyperspectral data [35]. The method implemented a 

low-dimensional projection of high-dimensional data using a transformation matrix. The 

transformation matrix was found by optimizing a projection index, which typically was a 

class separability measurement such as the Bhattacharyya distance measurement [2]. 

Bruce et al. suggested a wavelet transform method for feature extraction and 

dimensionality reduction [5, 6]. Wavelet transform is a signal processing tool for 

implementing a multiresolution analysis of signals [37]. Using the wavelet transform, the 

original signal is represented by a set of wavelet transform coefficients, and features are 
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extracted from these coefficients. Since the feature space typically has a much lower 

dimensionality than the original data space, the data dimensionality is reduced. Huang et 

al. investigated a brushlet transform method for feature extraction and dimensionality 

reduction [36]. Brushlet transform is another multiresolution analysis tool and can be 

implemented by expanding the Fourier transform onto a series of windowed Fourier 

bases [38], and thus the brushlet transform coefficients are complex. Similar to the 

wavelet-based dimensionality reduction, the brushlet-based method transforms the 

original data into the brushlet domain, features are extracted from the transform 

coefficients, and the data dimensionality is reduced. Utilizing certain transformations 

together with feature extraction is a common characteristic of these methods for 

improving the classification performance.  

 Among these techniques of feature extraction, the wavelet transform has been our 

research focus [3-6, 39-41]. As a generic signal processing tool, the wavelet transform 

also has been extensively applied to various areas of remote sensing applications ranging 

from image compression [42-44] and image fusion [45-47] to atmospheric correction [48] 

and pattern recognition [49-51]. Our research interests focus on the pattern recognition 

task using the wavelet transform, for which the wavelet-based automated classification 

and target detection systems are designed and implemented for various applications. 

Generally, in these systems the wavelet transform is utilized to implement the 

multiresolution analysis of remotely sensed hyperspectral remote sensing signals. The 

wavelet-based scalar energy features are extracted from the wavelet transform 

coefficients. The features could be further optimized using the Fisher’s linear 
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discriminant analysis [52]. Using the optimized features, classic statistical classifiers, 

such as the maximum likelihood classifier [2], are used to implement the classification 

and target detection. The system performance is evaluated in the sense of classification 

accuracy. The system performance is also evaluated using a receiver operating 

characteristics (ROC) analysis method [53]. Various experiments have shown promising 

results that using wavelet-based features greatly improves the performance of 

classification and target detection systems. It is these successful applications of the 

wavelet transform that promote the research topic of this dissertation. That is, we are 

interested in knowing how the wavelet-based feature extraction can help the linear 

spectral unmixing problem, and whether or not the feature extraction using the wavelet 

transform can improve the performance of hyperspectral linear unmixing, or abundance 

estimation. 

 Preliminary experimental results in the dissertation show that the feature 

extraction, particularly the wavelet-based feature extraction, can improve the linear 

spectral unmixing performance. For example, for a two-endmember abundance 

estimation problem where the two endmembers are soybean and soil, the average 

deviation of abundance estimation from true abundances is ~0.05 when using the 

wavelet-based features extracted from hyperspectral signals. Compared to directly using 

the original hyperspectral signals for the abundance estimation where the average 

estimation deviation is ~0.1, the estimation deviation is reduced by  ~50%. Results from a 

three-endmember abundance estimation problem, where the three endmembers are 

soybean, grass and soil, show that the estimation deviation can be reduced by ~30%. 
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Specifically, the average deviation of abundance estimation is reduced from ~0.14, where 

the original hyperspectal signals are directly utilized for the abundance estimation, to  

~0.1, where the wavelet-based features are utilized for the abundance estimation. These 

preliminary experiment results are very promising. Furthermore, we wonder whether 

there is any fundamental reason that leads to these promising results. Thus, in this 

dissertation, a series of mathematical analyses are performed. As a result, it is 

theoretically proven that there do exist some basic rules, according to which using the 

appropriate features extracted from hyperspectral signals is being able to improve the 

abundance estimation performance.  

Feature extraction approaches based on PCA and discrete cosine transform (DCT) 

are also investigated for the endmember abundance estimation in the dissertation, as a 

comparison with the DWT-based method. Note that the PCA-based method has been 

reported for the spectral unmixing problem [54, 55, 56, 57], but the aim is to reduce the 

dimensionality of hyperspectral data and the computational expenses. This is a 

conventional way to use PCA for feature extraction. In general, when dealing with 

hyperspectral signals, traditionally the dimensionality reduction has been based on 

methods that provide superior energy compaction, such as PCA and DCT. The reduction 

of dimensionality has stemmed from the use of only the first few transform coefficients. 

The approach works well when the aim is signal representation, such as the case of signal 

compression. However, this approach may be misguided when the aim is signal 

classification, which is also the aim of the spectral unmixing. In this case, differences 

between signals take on importance, and simply using the first few large-amplitude 
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transform coefficients may not be adequate. For this reason, alternative approaches to 

dimensionality reduction (or feature extraction) based on PCA and DCT are investigated 

in the dissertation.  

 
 1.3. Organization of The Dissertation 

The dissertation is organized as follows.  Chapter II first provides the background 

information on the LSE and its application to the hyperspectral linear unmixing problem. 

Then the error of abundance estimation using the LSE is mathematically derived and 

analyzed, which leads to a theoretical analysis of how and why feature extraction could 

improve the performance of abundance estimation using the LSE. The stability of the 

abundance estimation using the LSE is also discussed in this chapter.  Chapter III 

provides the background information on the wavelet transform and its application to the 

analysis of hyperspectral signals. Particularly, the implementation of the DWT and the 

feature extraction approaches based on DWT coefficients are introduced. Chapter IV 

proposes a DWT-based linear unmixing system of hyperspectral signals. The system 

consists of two modules. One is called the pre-processing module, in which the DWT is 

implemented and DWT-based features are extracted. For comparison purposes, two other 

pre-processing approaches, PCA-based and DCT-based methods, are introduced as well. 

The other module is the abundance estimation, where a constrained LSE approach is 

proposed for the abundance estimation of endmembers. To evaluate the abundance 

estimation performance of the proposed unmixing system, three quantitative evaluation 

metrics are introduced in this chapter as well.  Based on the proposed DWT-based linear 

unmixing system, Chapter V presents a series of experiments designed for the practical 
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testing and evaluating of the system. Experiment results, as well as result analyses and 

discussions, are provided in this chapter. Finally, Chapter VI draws conclusions from the 

experimental and theoretical analysis and recommends some future research topics.  

 
 1.4. Contributions of The Dissertation 

 The contributions of the dissertation include: 

 (1) The dissertation demonstrates the need for the use of non-traditional feature 

extraction (or dimensionality reduction) methods for linear unmixing of hyperspectral 

signals. It concludes that rather than using feature extraction methods that are based on 

signal representation, such as conventional PCA and DCT approaches, the remote 

sensing community needs to investigate feature extraction methods that are based on 

signal classification for linear unmixing problems.  

(2) The dissertation introduces the wavelet transform to the abundance estimation 

of endmembers using hyperspectral signals. Feature extraction based on the discrete 

wavelet transform (DWT) is proposed for improving the abundance estimation 

performance. The dissertation designs and implements a DWT-based linear unmixing 

system for improving the abundance estimation of endmembers using hyperspectral 

signals. The system consists of a pre-processing module and an abundance estimation 

module. The DWT-based features are first extracted from the original hyperspectral 

signals in the pre-processing module. Then the abundance estimation of endmembers is 

completed using the DWT-based features, instead of the original hyperspectral signals.  

(3) The dissertation both experimentally and theoretically analyzes how the use of 

appropriate features can improve the abundance estimation performance. Experimental 
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results show that the use of the DWT-based features extracted from the original 

hyperspectral signals greatly improves the endmember abundance estimation. 

Experimental results also show that the use of non-traditional DCT-based features, which 

are not based on signal representation, improves the endmember abundance estimation. 

Theoretical results reveal the fundamental reasons why the use of appropriate features, 

such as the DWT-based features, can improve the abundance estimation of endmembers. 

Moreover, the theoretical analysis results present a generic criterion to design a feature 

extraction technique for improving the endmember abundance estimation. 
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CHAPTER  II 
 

LEAST SQUARES ANALYSIS IN LINEAR UNMIXING  

OF HYPERSPECTRAL SIGNALS 
 
 

 Least squares estimation (LSE) is a mathematical and statistical technique that is 

used to implement an optimum estimation of parameters based on certain known 

information [19-21]. The estimation is regarded as optimum in the sense of minimizing 

the total energy of estimation errors. For the linear spectral unmixing problem, the LSE is 

used to implement an optimum estimation of abundance, given the information of mixed 

pixels and constituent pure pixels. The LSE is implemented, in the context of linear 

spectral unmixing, under an assumption of linear mixture represented in equation (1.1). 

That is, it is assumed that the mixed pixel is a linear combination of the constituent pure 

pixels. With this in mind, the major concern of this dissertation is to investigate whether 

or not the performance of abundance estimation using the LSE can be improved by using 

specific features extracted from the given mixed-pixel spectrum and constituent pure-

pixel spectra. That is, instead of using the original mixed-pixel spectrum and constituent 

pure-pixel spectra, we use the extracted features to solve the linear mixture equation (1.1) 

for abundances and analyze the results to determine whether or not abundance estimation 

is improved. In the dissertation, both theoretical and experimental analysis results show a 

positive answer to the question. This chapter presents the theoretical analysis results. 
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2.1. Least Squares Estimation of Abundances 

Starting with the linear mixture model of equation (1.1), the objective of the LSE 

of abundances is to obtain an optimum estimate, LSxr , of abundances oxr , given mixed-

pixel spectrum yr  and endmember spectra A , such that the total error energy,  

22
oo xAye rrr

−= ,                                                  (2.1) 

is minimized, where yr , oxr , oer  and A  are defined in equations (1.2) to (1.5), 

respectively. The symbol ⋅  stands for a vector norm operation, which is defined as the 

inner product of the vector. That is, equation (2.1) can be rewritten as,  
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where superscript T  refers to a vector or matrix transpose operation. Defining the total 

error energy, oJ , of error oer , 

o
T

ooo eeeJ rrr
== 2 ,                                                   (2.3) 

a LSE of abundances can be obtained by setting the partial derivative of oJ  to zero,  

0
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=
∂
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x
J

.                                                        (2.4) 

Substituting equations (2.2) and (2.3) into equation (2.4), a set of linear equations are 

obtained,  

022
rrr

=+− LS
TT xAAyA .                                              (2.5) 

Equation (2.5) can be further simplified as, 
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yAxAA T
LS

T rr
= ,                                                       (2.6) 

This is the well-known normal equation of LSE [20], where AAT  is an auto-correlation 

matrix of endmember spectra and yAT r  is a cross-correlation vector of endmember 

spectra and mixed-pixel spectrum. Solving the normal equation (2.6), an optimum 

estimation, LSxr , of abundance oxr , can be obtained, 

yAAAx TT
LS

rr 1)( −= ,                                                   (2.7) 

provided that 1)( −AAT  exists. Assuming that the endmember spectra are linearly 

independent, i.e., in equation (1.5) the column vectors in endmember matrix A  are 

linearly independent, it can be shown that the inverse of the auto-correlation matrix, 

AAT , always exists. The proof is provided in Appendix A.  

 The objective is to investigate whether or not the abundance estimate, LSxr , can be 

improved by adjusting the endmember spectra A  and mixed-pixel spectrum yr , 

particularly in this study, by utilizing the features extracted from the endmember spectra 

A  and mixed-pixel spectrum yr . First of all, in order to quantitatively evaluate whether 

or not the abundance estimation performance is improved, a quantitative criterion needs 

to be detemined. For this study, mean square error (MSE) of abundance estimate is 

utilized as such a quantitative criterion. Firstly, an error of abundance estimate, xer , is 

defined as, 

oLSx xxe rrr
−= ,                                                          (2.8) 
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where oxr  refers to the true abundance, defined in equation (1.3). The total error energy, 

xJ , of error xer , can be computed as, 

x
T

xx eeJ rr
= .                                                            (2.9) 

Then, the MSE of abundance estimate, xΓ , can be defined as the mathematical 

expectation of the average value of the total error energy,  
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where ][⋅E  represents an operation of mathematical expectation and M  is the number of 

endmembers. Note that an advantage of using the average value of the total error energy, 

M
J x , is that the MSE is no longer scaled by the number of endmembers. Thus, it allows 

for a fair comparison of the results of the MSE among different experiments with various 

numbers of endmembers.  

 Starting with the definition of the MSE, xΓ , of abundance estimate in equation 

(2.10), it is necessary to further represent it using endmember spectra, A , and mixed-

pixel spectrum, yr , because the objective is to investigate how the feature extraction from 

endmember spectra and mixed-pixel spectrum affects the performance of abundance 

estimation using the LSE. The further derivations will be provided in the next section to 

build a relationship among the three parameters: (i) the MSE of abundance estimate, xΓ ; 

(ii) the endmember spectra, A ; and (iii) the mixed-pixel spectrum, yr . 
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2.2. Error Analysis of Abundance Estimation 

Substituting equation (1.1) into equation (2.7), LSxr  can be derived as,  

o
TT

oLS eAAAxx rrr 1)( −+= ,                                             (2.11) 

where oxr  is the true abundance and oer  is the random measurement error, defined in 

equations (1.3) and (1.4), respectively. Substituting equation (2.11) into equation (2.8), 

the abundance estimation error, xer , can be expressed as, 

o
TT

x eAAAe rr 1)( −= .                                            (2.12) 

Utilizing equation (2.10) and the definition of the trace of a matrix, the MSE of 

abundance estimate, xΓ , can be derived as,  
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where ][⋅Tr  is a matrix trace operation and defined as a summation of main diagonal 

elements of a matrix. Substituting equation (2.12) into equation (2.13), xΓ  can be further 

derived as, 

[ ]o
T

x RAATr
M

++=Γ )(1 ,                                             (2.14) 

where TT AAAA 1)( −+ =  is defined as a pseudo-inverse of matrix A  and ][ T
ooo eeER rr

=  is 

an auto-correlation matrix of random measurement error vector oer . The derivation of 

equation (2.14) is provided in Appendix B. 

 Suppose that the random measurement error vector, oer , defined in equation (1.4), 

has the following two statistical characteristics:  
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(i) Assumption 2.1.1: oer  has zero mean,  

0][
rr

=oeE ;                                                           (2.15) 

(ii) Assumption 2.1.2: Random elements, oje  (for Nj ,,2,1 L= ), in oer  are 

uncorrelated and have different variances of 2
ojσ , respectively, where N  is the number 

of spectral bands.   

Then, the auto-correlation matrix (or a covariance matrix due to 0][
rr

=oeE ), oR , 

in equation (2.14) can be computed as, 
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Note that oR  is a diagonal matrix with 2
ojσ  being main diagonal elements. Substituting 

equation (2.16) into equation (2.14), the MSE of abundance estimate, xΓ , can be further 

computed as,  

∑
=

=Γ
N

j
ojjx p

M 1

21 σ ,                                                   (2.17) 

where jp  (for Nj ,,2,1 L= ) are the main diagonal elements in the symmetric matrix, 

++ AA T)( . Note that both jp  and 2
ojσ  are nonnegative, and thus each 2

ojjp σ  is 

nonnegative.  

 To solve equation (1.1) for abundances, the endmember spectra, A , defined in 

equation (1.5), have to be determined a priori. Typically this is accomplished by using a 
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library of endmember spectra. It is inevitable that there exist differences between the 

library endmember spectra and the true endmember spectra constituting the mixed-pixels. 

Thus, it is reasonable to assume that the random measurement error, oer , defined in 

equation (1.4), stems from this difference, that is, 

 Assumption 2.2: The random measurement error in LMM stems from the 

difference between the library endmember spectra and the true endmember spectra 

constituting the mixed-pixels. 

Based on Assumption 2.2, equation (1.1) can be rewritten as, 

oAooA xxAxAy rrrr
∆+=∆+= )( ,                                       (2.18) 

where matrix A  represents the library endmember spectra and matrix 

],,,[ 21 MA δδδ
r

L
rr

=∆  represents the differences between the library endmember spectra 

and the true endmember spectra constituting the mixed-pixels. Note that in matrix A∆ , 

the thi  column vectors, T
iNiii ],,,[ 21 δδδδ L

r
=  (for Mi ,,2,1 L= ), represents the 

difference between the thi  library and true endmember spectra, where M  is the number 

of endmembers and N  is the number of spectral bands. Comparing equations (1.1) and 

(2.18), the random measurement error oer  can be expressed, in terms of the random 

endmember spectrum differences, 

oAo xe rr
∆= ,                                                      (2.19)  

where oxr  is the true abundance vector, as defined in equation (1.3).  

 Furthermore, suppose that the random errors, iδ
r

 (for Mi ,,2,1 L= ), have the 

following three statistical characteristics:  
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(i) Assumption 2.3.1: iδ
r

 are linearly independent;  

(ii) Assumption 2.3.2: Each of the iδ
r

 has zero mean, 

0][
rr

=iE δ ;                                                          (2.20) 

(iii) Assumption 2.3.3: Random elements, ijδ  (for Mi ,,2,1 L=  and 

Nj ,,2,1 L= ), in each iδ
r

 are uncorrelated and have different variances of 2
ijσ , 

respectively, where M  is the number of the endmembers and N  is the number of 

spectral bands.   

Then there exists a correlation matrix (or a covariance matrix due to 0][
rr

=iE δ ), 

iR , for each iδ
r
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Note that each iR  is a diagonal matrix with 2
ijσ  being main diagonal elements. Based on 

these three assumptions and equation (2.19), 2
ojσ  in equation (2.17) can be further 

derived as, 

),,2,1(     ,
1

222 Njx
M

i
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where each of oix , as defined in equation (1.3), is a true abundance corresponding to each 

of the endmembers. The derivation of equation (2.22) is provided in Appendix C. 



www.manaraa.com

 

 

28

Substituting equation (2.22) into equation (2.17), the MSE of the abundance estimate, xΓ , 

can be further computed as, 

∑∑
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oiijjx xp

M 1 1

221 σ ,                                            (2.23) 

Finally, equation (2.23) builds a relationship among the three parameters: (i) the 

MSE of abundance estimate, xΓ ; (ii) the endmember spectra, A ; and (iii) the mixed-pixel 

spectrum, yr . Note that in equation (2.23), M , N  and oix  are all constants for the given 

endmember spectra and mixed-pixel spectrum. Thus, the value of xΓ  is only affected by 

the values of two variable terms, jp  and 2
ijσ . Based on equation (2.17), the variable 

term jp  (for Nj ,,2,1 L= ) are main diagonal elements in the symmetric matrix 

++ AA T)( , and thus uniquely determined by the endmember spectra, A . The variable 

term 2
ijσ  (for Mi ,,2,1 L=  and Nj ,,2,1 L= ) indicates the variances of endmember 

spectra. It can be called the within-endmember variances.  

According to equation (2.23), if we can reduce the endmember spectrum variance 

2
ijσ , and at the same time adjust the values of jp  such that the product of jp  and 2

ijσ  is 

reduced, then we can reduce the MSE of abundance estimate, xΓ . Based on our previous 

research experience of classification and target detection using hyperspectral signals [5, 

6, 39-41], it is possible to reduce the within-endmember (or within-class for the 

classification problem) variances, 2
ijσ , by using the feature extraction approach based on 

discrete wavelet transform (DWT). However, at this point, it is not apparent how the 
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value of jp  is affected by the use of feature extraction methods, such as those based on 

the DWT. Therefore, some further results are derived as shown in the next section. 

 
2.3. Simplification of Abundance Error Analysis Results 

 The result of equation (2.23) can be simplified by making further assumptions. 

First of all, note that in Assumption 2.1.2 concerning the random measurement error 

vector oer , it is assumed that each of the random elements oje  (for Nj ,,2,1 L= ) in oer  

has its own variance 2
ojσ . Thus the resulting correlation matrix, oR , is a diagonal matrix, 

as shown in equation (2.16). Furthermore, suppose that 

Assumption 2.4: All the random elements oje  (for Nj ,,2,1 L= ) in oer  have the 

same variance 2
oσ , where N  is the number of spectral bands.   

Then the correlation matrix, oR , can be reduced to an identity matrix multiplied 

by a constant factor, 2
oσ , i.e., 

IeeER o
T

ooo
2][ σ==

rr ,                                             (2.24) 

where I  is a N  by N  identity matrix and N  is the number of spectral bands. 

Substituting equation (2.24) into equation (2.14), a simplified expression about the MSE 

of abundance estimate, xΓ , can be derived as,  

[ ] 211
oxs RTr

M
σ−=Γ ,                                                 (2.25) 
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where xsΓ  represents a simplified version of xΓ , AAR T=  is an auto-correlation matrix 

of endmember spectra, and M  is the number of endmembers. The derivation of equation 

(2.25) is provided in Appendix D.  

 Secondly, note that in Assumption 2.3.3 concerning the differences of endmember 

spectra, iδ
r

, it is assumed that each of the random elements, ijδ  (for Mi ,,2,1 L=  and 

Nj ,,2,1 L= ), in iδ
r

 has its own variance 2
ijσ . Thus the resulting correlation matrix, iR  

(for Mi ,,2,1 L= ), is a diagonal matrix, as shown in equation (2.21). Given that 

Assumptions 2.1.1, 2.3.1 and 2.3.2 concerning oer  and iδ
r

 (for Mi ,,2,1 L= ) hold, in 

order to match Assumption 2.4 that all the random elements in oer  has the same variance 

2
oσ , we make the following further assumption: 

Assumption 2.5:  All the random elements ijδ  (for Mi ,,2,1 L=  and 

Nj ,,2,1 L= ) in iδ
r

 has the same variance 2
iσ , where M  is the number of the 

endmembers and N  is the number of spectral bands.   

Then the correlation matrix, iR , can be reduced to an identity matrix multiplied 

by a constant factor, 2
iσ , i.e., 

IER i
T

iii
2][ σδδ ==

rr
,                                                (2.26) 

where I  is a N  by N  identity matrix and N  is the number of spectral bands. Based on 

the two further assumption, Assumptions 2.4 and 2.5, using equations (2.19), (2.24) and 

(2.26), 2
oσ  can be derived as,  
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∑
=

=
M

i
oiio x

1

222 σσ ,                                                   (2.27) 

where oix  are true abundances corresponding to each of endmembers, as defined in 

equation (1.3). The derivation of equation (2.27) is provided in Appendix C.  Substituting    

equation (2.27) into equation (2.25), the simplified version of the MSE of abundance 

estimate, xsΓ , can be computed as, 

[ ]∑
=

−=Γ
M

i
oiixs xRTr

M 1

2211 σ ,                                            (2.28) 

 Equation (2.28) is a simplified version of equation (2.23), under the two further 

assumptions, Assumptions 2.4 and 2.5. Note that these two assumptions may not hold for 

some cases. For example, it will be experimentally shown in the following chapters that 

these assumptions do not hold when using the original hyperspectral signals for 

abundance estimation, but do hold when using features based on the DWT for abundance 

estimation. The simplified expression of the MSE of abundance estimate, xsΓ , provides 

further insights into how the feature extraction can affect the abundance estimation using 

the LSE. Note that in equation (2.28) xsΓ  is represented by two separated terms 

multiplied by a constant factor 
M
1 . One term is a weighted sum of the within-

endmember variance, 2
iσ , which is similar to 2

ijσ  in equation (2.23) except that now all 

2
ijσ  are the same and equal to 2

iσ . The other term is ][ 1−RTr , which is a simplified 

alternative of jp  term in equation (2.23).  
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Note that AAR T=  used in equation (2.28) is an auto-correlation matrix of 

endmember spectra. Thus, intuitively there should exist certain relationship between 

][ 1−RTr  and the correlation among the endmember spectra. Experimentally it can be 

shown that the value of ][ 1−RTr  can be reduced when increasing the separability among 

endmember spectra. Even though this trend is not a simple monotonic relationship, it 

does provide a possibility to reduce the value of ][ 1−RTr  via adjusting the endmember 

spectra, e.g., via feature extraction. Again, based on our previous research on 

classification and target detection using hyperspectral signals [5, 6, 39-41], it is possible 

to increase the separability among classes by using the feature extraction approach based 

on the DWT, where the separability is measured by the between-class (or between-

endmember for the linear unmixing problem) variances. That is, it is possible to reduce 

the value of ][ 1−RTr  by increasing the between-endmember variance by using the DWT-

based features.  

In summary, it is possible to reduce the MSE of abundance estimate, xsΓ , by 

using appropriate features, such as DWT-based features, extracted from the original 

endmember spectra and mixed-pixel spectra, because the use of appropriate features can 

reduce the within-endmember variance and increase the between-endmember variance, 

and consequently reduce the values of 2
iσ  and ][ 1−RTr , as well as the value of xsΓ  

according to equation (2.28).  
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2.4. Stability Analysis of Abundance Estimation  

 The auto-correlation matrix of endmember spectra, AAR T=  used in equation 

(2.28), is real and symmetric, and can be represented in terms of its eigenvalues and 

eigenvectors [19], 

TQQR Λ= ,                                                         (2.29) 

where Q  is a matrix with each column being an eigenvector of R , and Λ  is a diagonal 

matrix with diagonal elements being eigenvalues of R . Based on equation (2.29), it can 

be shown that, 

∑
=

−− =Λ=
M

i i

TrRTr
1

11 1][][
λ

,                                          (2.30) 

where M  is the number of endmembers and iλ  are M  distinct eigenvalues of R . The 

derivation of equation (2.30) is provided in Appendix E. Since the auto-correlation 

matrix, R , is positive definite (the proof is provided in Appendix A), the values of iλ  are 

all positive. According to equation (2.30), the value of ][ 1−RTr  is directly related to the 

values of iλ . If there exists an extremely small value among iλ , which indicates that the 

matrix R  is ill-conditioned [19], then it will result in an extremely large value of 

][ 1−RTr , and thus possibly large value of xsΓ  according to equation (2.28). Based on this 

analysis, an ill-conditioned R  should be avoided in order to avoid a large MSE of 

abundance estimation.  

 The ill-condition or the well-condition of the matrix, R , is measured by the 

condition number of a matrix [19], which is computed as,  
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1)( −= RRRCN ,                                                   (2.31) 

where R  is the norm of matrix R , which is defined as,  













=
≠ z

zR
R

z
r

r

rr 0
max ,                                                  (2.32) 

where zr  is any non-zero vector. Equation (2.32) also implies the following fact that [19],  

zRzR rr
≤ .                                                     (2.33) 

That is, the norm of matrix R , R , bounds the amplification power of matrix R  in a 

linear transformation zRr . For a positive definite matrix, such as the auto-correlation 

matrix of endmember spectra R  in the linear unmixing problem, the condition number 

can be simply computed as [19],  

min

max)(
λ
λ

=RCN ,                                                  (2.34) 

where maxλ  and minλ  are the maximum and minimum eigenvalues of matrix R , 

respectively. Based on the definition of the condition number, shown in equation (2.31) 

or (2.34), an ill-conditioned matrix has a large condition number, and the best condition 

number is 1, i.e., 

1)( ≥RCN .                                                      (2.35) 

This can be easily shown using the definition of the condition number, equation (2.31) or 

(2.34), that is, 

1)( 11 ==≥= −− IRRRRRCN ,                                (2.36) 

where I  is referred to as an identity matrix, or, 
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1)(
min

max ≥=
λ
λ

RCN .                                               (2.37) 

For the LSE problem, the concept of the condition number also can be utilized to 

measure the stability of the least squares solution, LSxr , in equation (2.7). Rewriting the 

normal equation (2.6) in the following form, 

dxR LS

rr
= ,                                                        (2.38) 

where AAR T=  is an auto-correlation matrix of endmember spectra, and yAd T rr
=  is a 

cross-correlation vector of endmember spectra and mixed-pixel spectrum. Obviously, 

equation (2.38) is a linear equation and LSxRr  is a linear transformation of LSxr . The 

solution of LSxr  is completely determined by the auto-correlation matrix, R , and the 

cross-correlation vector, d
r

. Then, the question is how the least squares solution, LSxr , is 

influenced, if there exists some disturbance in R  or d
r

. 

 Based on equations (2.33) and (2.34), it can be shown that there exist the 

following relationships between the disturbance in R  or d
r

 and the disturbance in the 

least squares solution LSxr : 

d
RCN

x
d

LS

xLS
r

r

r

r
rr δδ

)(≤ ,                                                 (2.39) 

and  

R
RCN

x
R

LS

xLS δδ
)(≤r

r
r

,                                                (2.40) 
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where )(RCN  is the condition number of matrix R  defined in equation (2.31), Rδ  and 

d
r
r

δ  are referred to as the disturbances in R  and d
r

, respectively, and 
LSxr

r
δ  is referred to as 

an error associated with LSxr , caused by the disturbances Rδ  and d
r
r

δ . The derivations of 

equations (2.39) and (2.40) are provided in Appendix F. These results indicate that the 

relative error in the solution LSxr  caused by the disturbances in R  and d
r

 is bounded by 

the condition number of matrix R . A matrix is said to be ill-conditioned if a small 

disturbance in R  or d
r

 results in a large disturbance in the solution LSxr , which also 

implies a large condition number of matrix R , according to equations (2.39) and (2.40). 

Therefore, in order to obtain a stable solution of LSxr , we need to reduce the condition 

number of matrix R  and avoid an ill-conditioned matrix R .  

 Finally, in summarizing the theoretical analysis in this chapter, we propose the 

use of appropriate feature extraction approaches, particularly the feature extraction 

method based on the discrete wavelet transform, to (i) reduce within-endmember 

variances and increase between-endmember variances in order to reduce the abundance 

estimation error using the LSE, and (ii) reduce the condition number of the auto-

correlation matrix R  of endmember spectra, )(RCN , in order to avoid an ill-conditioned 

matrix R , which could result in an extremely large abundance estimation error and an 

unstable solution of abundance estimation. 
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CHAPTER  III 
 

FEATURE EXTRACTON USING DISCRETE WAVELET TRANSFORM FOR 

LINEAR UNMIXING OF HYPERSPECTRAL SIGNALS 

 
 Feature extraction plays a significant role in target detection and classification 

applications using remotely sensed hypersepctral signals. The use of appropriate features 

not only can reduce the data volume (or dimensionality) of hyperspectral signals and thus 

computational costs of hyperspectral signal analysis, but also can improve the 

performance of target detection and classification. The reduction of data dimensionality 

and computational costs results from the fact that the original high-dimensional 

hyperspectral signals are represented in a lower-dimensional space using fewer features. 

The improvement of target detection and classification performance stems from the 

possibility that feature extraction can make different classes more separable in feature 

spaces, and thus lead to a better classification performance. The separability is typically 

measured by within-class variances and between-class variances [2, 6, 52]. The basic idea 

is that the class separability is increased when within-class variances are decreased and 

between-class variances are increased. The fundamental results from the theoretical 

analysis in chapter II also shows that this idea is suitable to the linear unmixing problem 

of hyperspectral signals. That is, using appropriate features can make different 

endmembers more separable in feature space, and thus result in an improvement of 

abundance estimation performance.  The increase of endmember separability is achieved 
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by feature extraction to decrease within-endmember variances and increase between-

endmember variances.  

This chapter will introduce feature extraction approaches based on the discrete 

wavelet transform (DWT) for the linear unmixing problem of hyperspectral signals. The 

DWT is a mathematical technique that is used to implement a multiresolution analysis 

(MRA) of signals [37]. The fine-scale and large-scale information of a hyperspectral 

signal can be simultaneously investigated by projecting the signal onto a set of wavelet 

basis functions with various scales. Extracting appropriate features from the wavelet-

based multiresolution information provides a potential to effectively discriminate 

hyperspectral signals in feature space. The idea has been verified in our previous research 

[3-6, 39-41] for target detection and classification problems using hyperspectral signals. 

A large variety of choices of features could be extracted from the DWT-based 

multiresolution information, including the DWT coefficients themselves or any 

combination of the coefficients. According to characteristics of linear unmixing problem, 

linear wavelet-based features are preferred. In this chapter, the DWT-based feature 

extraction approaches and corresponding properties will be described and discussed. The 

discussion starts with a fundamental and brief introduction to the wavelet transform.   
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3.1. Background on Wavelet Transform 

The wavelet transform of a signal, )(xf , is defined as an inner product of the 

signal and wavelet bases, i.e.,  

>=< )(),(),( , xxfbsW bsψ ,                                           (3.1) 

where )(. xbsψ  are referred to as wavelet bases and ),( bsW  are referred to as wavelet 

transform coefficients of signal )(xf . The wavelet bases, )(. xbsψ , can be formed from a 

basic wavelet (or mother wavelet), )(xψ , by a series of scaling and shifting operations. 

The wavelet bases formed by this manner are usually called the first generation wavelets 

[58, 59, 60, 61]. The mother wavelet, )(xψ , can be any real function, satisfying the 

following admissibility condition [62, 63],  

∫
+∞

∞−

∞<
Ψ

ω
ω
ω

d
2)](

,                                               (3.2) 

where )(ωΨ  is the Fourier transform of )(xψ , and ω  is the Fourier domain variable. 

Note that since ω  is in the denominator of the integrand in equation (3.2), it is necessary 

that 0)0( =Ψ , which results in,  

∫
+∞

∞−

= 0)( dxxψ .                                                      (3.3) 

Equation (3.3) indicates that the mother wavelet must oscillate and have an average value 

of zero.  

From the mother wavelet, )(xψ , the wavelet bases, )(. xbsψ , are formed by a 

series of scaling and shifting operations, 
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





 −

=
s

bx
s

xbs ψψ 1)(, ,                                               (3.4) 

where 0>s  and b  are any real numbers.  The variable s  indicates the scale (or width) 

of a particular basis function, and the variable b  specifies its shifted position.  Using 

wavelet bases in equation (3.4), the wavelet transform defined in equation (3.1) can be 

computed as, 

∫
∞

−∞=







 −

=
x

dx
s

bxxf
s

bsW ψ)(1),( ,                                        (3.5) 

provided that the wavelet bases, )(. xbsψ , are real. Equation (3.5) is a continuous version 

of the transform, generally called continuous wavelet transform (CWT).  

If we discretize the scale and shift parameters, s  and b , in equation (3.4) to 

integer values, i.e., let jss 0= and ksb j
0= , where 20 ≥s  and ∞<<∞− kj,  are any 

integers, then discrete wavelet bases, )(, nkjψ , can be formed as, 










 −
= j

j

jkj s
ksn

s
n

0

0

0

,
1)( ψψ .                                          (3.6) 

Based on the definition of wavelet transform in equation (3.1), using the discrete wavelet 

bases, a discrete wavelet transform (DWT) of a finite energy sequence with N  samples, 

)(nf , can be computed as, 

∑
−

=









 −
=

1

0 0

0

0

)(1),(
N

n
j

j

j s
ksn

nf
s

kjW ψ ,                                       (3.7) 

where ),( kjW  are referred to as the DWT coefficients of sequence )(nf . When 20 =s , 

equation (3.7) defines a well-known two-channel (or dyadic) DWT, i.e.,  
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( )∑
−

=

−
−

=
−=

1

0

2
2

2)(2),(
0

N

n

j
j

s
knnfkjW ψ .                                      (3.8) 

In practice, instead of computing the inner product defined in equation (3.8), there 

exist computationally efficient algorithms to implement the dyadic DWT [37, 59]. One 

such algorithm is illustrated in the upper part of Figure 3.1. The algorithm is usually 

referred to as the fast wavelet transform (FWT). The basic idea behind the FWT 

algorithm is to represent the mother wavelet as a set of high-pass and low-pass filters in a 

filter bank [64, 65]. Then the signal is passed through the filter bank.  Following the 

filtering, the signal is decimated by a factor of 2.  The outputs of the low-pass branch are 

called wavelet approximation coefficients, and the outputs of the high-pass branch are 

called wavelet detail coefficients. This filtering process followed by decimation is 

referred to as single-step wavelet decomposition. The single-step wavelet decomposition 

can be performed iteratively. At each iteration step, the wavelet approximation 

coefficients from the previous scale are used as the input of the filter bank. Initially, the 

original signal is the input of the filter bank. While theoretically this iteration could be 

continued ad infinitum, in many practical settings the iteration is performed until a pre-

defined scale (a set maximum) is reached. Oftentimes, the maximum scale is set to be the 

scale at which the number of the wavelet approximation coefficients is just less than the 

filter length, in order to avoid the trivial filtering operation. Note that the FWT algorithm 

implements the dyadic DWT from the bottom up in an iterative manner, i.e., computing 

fine-scale coefficients first.  
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Figure 3.1. The dyadic (2-channel) forward and inverse FWT. 
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In general, the FWT algorithm can be described using the following iteration 

expressions, 

)2(    )()(
1

0
1 lkClGkD

L

l
jj +⋅= ∑

−

=
+  ,                                           (3.9) 

)2(    )()(
1

0
1 lkClHkC

L

l
jj +⋅= ∑

−

=
+ ,                                         (3.10) 

where jD  and jC  are the wavelet detail and approximation coefficients at scale j , 

respectively. The functions G  and H  are referred to as the high-pass and low-pass 

decomposition filter impulse responses, respectively, and L  is the filter length.  

Initially, 0C  (with 0=j ) is equivalent to the original finite-length sequence, )(nf . 

 So far, we have discussed the two-channel FWT algorithm. It can be easily 

extended to the multi-channel case. According to the definition of DWT in equation (3.7), 

when Ms =0 , where 2≥M  is any constant integer, a M -channel DWT can be 

computed as,  

( )∑
−

=

−
−

=
−=

1

0

2 )(),(
0

N

n

j
j

Ms
knMnfMkjW ψ .                             (3.11) 

If we represent the mother wavelet as a set of high-pass, band-pass, and low-pass filters 

in a multi-channel filter bank [66, 67, 68], as illustrated in Figure 3.2, then a M -channel 

FWT algorithm can be described using the following iteration expressions, 

)( )()(
1

0
,1 lMkClGkD

L

l
jmmj += ∑

−

=
+  ,                                         (3.12) 

)()()(
1

0
1 lMkClHkC

L

l
jj += ∑

−

=
+ .                                             (3.13) 
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Figure 3.2. The M -channel forward FWT. 

 

In equations (3.12) and (3,13), mjD ,  are the wavelet detail coefficients at scale j  and 

channel m , and jC  are the wavelet approximation coefficients at scale j . The functions 

mG  are 1−M  high-pass and band-pass decomposition filters and the function H  is the 

low-pass decomposition filter. Similar to the two-channel FWT, the single-step M -

channel wavelet decomposition consists of a filtering operation and a following 

decimation of factor M .   

The signal can be perfectly reconstructed from the wavelet approximation and 

detail coefficients when applying the FWT algorithm inversely [59, 64-67]. As an 

example, a two-channel inverse FWT (IFWT) as illustrated in lower part of Figure 3.1, 

where the wavelet approximation and detail coefficients are firstly up-sampled by 

inserting zeros between any two DWT coefficients. Then, the up-sampled wavelet 

coefficients are filtered using a set of reconstruction filters. Note that the reconstruction 

filters are simply time reversals of the decomposition fitlers when the corresponding 
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wavelet bases are orthogonal [58, 59, 69]. Finally, the filter outputs are summed. This 

process of up-sampling, filtering and summation is referred to as single-step wavelet 

reconstruction. The single-step wavelet reconstruction can be iteratively performed, 

starting from the wavelet approximation and detail coefficient at the maximum 

decomposition scale, until the original signal is completely reconstructed.  

Figure 3.3 shows an example of the wavelet analysis of a signal using the FWT 

algorithm. The signal, f , is a typical vegetation hyperspectral reflectance curve, 

consisting of 1400 samples which represents 1400 spectral bands between 354nm and 

1753nm wavelengths. The mother wavelet utilized for the DWT is the Haar wavelet, 

which is defined as, 








≤≤−

≤≤
=

else
n

n
n

              ,0   
121   ,1
210   ,1    

)(ψ .                                               (3.14) 

The associated high-pass and low-pass decomposition filter impulse responses have only 

two samples,  

]
2

1,
2

1[−=G ,                                                     (3.15) 

]
2

1,
2

1[=H ,                                                       (3.16) 

which are the shortest possible wavelet filters. Note that the Haar wavelet bases are 

orthogonal [58, 59], thus the corresponding wavelet decomposition and reconstruction 

filters are the same. In this example, the filter G  and H  defined in equations (3.15) and 

(3.16) are used in the FWT algorithm, and the signal is decomposed until the 5th scale. 
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Figure 3.3 shows the wavelet decomposition coefficients at various scales based on the 

FWT algorithm. Figure 3.4 shows the various-scale reconstructed signals, which is 

obtained by using the inverse FWT algorithm described in Figure 3.2 and using only the 

wavelet coefficients at the corresponding scale while setting other coefficients to zeros. 

That is, the reconstructed signals, jd , include only information in wavelet detail 

coefficients, jD , for 5,,2,1 L=j . The reconstructed signal, 5c , includes only 

information in wavelet approximation coefficients, 5C . It can be seen that the fine-scale 

and large-scale information in the signal is extracted simultaneously after the DWT 

analysis. It is also interesting to notice that there exist the following relationships,  

1455 dddcf ++++= L .                                             (3.17) 

That is, the original signal can also be perfectly reconstructed by summing the various-

scale reconstructed signals.  

In summary, the DWT allows a simultaneous investigation of fine-scale and 

large-scale information in the signal without losing any information. Thus it provides a 

potential to extract appropriate features from the DWT coefficients for improving the 

classification or linear unmixing performance. Furthermore, the FWT algorithm 

implements the DWT in a computationally efficient manner, and makes it possible for the 

DWT to be effectively used in practical applications. 
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Figure 3.3. An example of the dyadic (2-channel) forward FWT. 

 

2D

3D

4D

5D

5C

f

1D

0 

1 

-0.01

0.01 

0.025

-0.025

0.06

-0.06
0.15

-0.15

0.5

-0.5
4

0



www.manaraa.com

 

 

48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The reconstruction of wavelet coefficients in Figure 3.3. 
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3.2. DWT-Based Feature Extraction for Linear Unmixing  
of Hyperspectral Signals 

Many typical wavelet bases, such as the Daubechies wavelet family, which 

includes the Haar wavelet as its length-2 member, are orthonormal and compactly 

supported [58, 59, 70, 71]. The wavelet transforms using these wavelet bases are 

orthonormal. Furthermore, these transforms are linear since equation 3.1 is satisfied. For 

the linear unmixing problem using the LMM and the LSE method, it is necessary to 

extract features after the wavelet analysis of hyperspectral signals. This is because of the 

fact that without feature extraction, only performing wavelet transform on hyperspectral 

signals does not help to improve linear unmixing performance. In general, there exists the 

following theorem:  

Theorem 3.1: An orthonormal linear transform does not change the least square 

solution of abundance estimation using the linear mixture model.  

Proof:  In general, an orthonormal linear transform, of vector ar  is defined as, 

aUb rr
= ,                                                         (3.18) 

where b
r

 is the representation of ar  in the transform domain, and U  is an orthonormal 

matrix which has the following property: 

TUU =−1 , or IUU T = ,                                             (3.19) 

where superscript T  is referred to as a matrix transpose operation, and I  is an identity 

matrix. Applying the orthonormal linear transform, U , to the linear mixture model 

(LMM) defined in equation (1.1), we have the LMM expression in the transform domain, 
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oo eUxUAyU rrr
+= .                                                  (3.20) 

According to the least square solution of abundance estimation defined in equation (2.7), 

using the transform domain expression of the LMM, equation (3.20), the least square 

solution of abundance estimation can be computed as,  

yUUAUAUA

yUUAUAUAx
TTTT

TT
LS

r

rr

1

1

)(       

)())((
−

−

=

=
.                                        (3.21) 

Using the orthonormal property of transform matrix, U , defined in equation (3.19), 

equation (3.21) can be further reduced to,  

yAAAx TT
LS

rr 1)( −= ,                                               (3.22) 

which is equivalent to equation (2.7). That is, an orthonormal linear transform does not 

change the least square solution of abundance estimation using the linear mixture model. 

In Chapter V, experimental results will also be provided to further verify this theorem. 

The DWT using an orthonormal wavelet basis is a linear orthonormal transform. 

Based on Theorem 3.1, simply using the wavelet transform results of hyperspectral 

signals, i.e., using all the wavelet transform coefficients, will not help to improve the 

abundance estimation. Moreover, it does not reduce the dimensionality of hyperspectral 

signals either, which is another motivation factor for feature extraction. Therefore, it is 

necessary to extract features following the wavelet analysis in order to possibly improve 

the performance of abundance estimation. A large variety of choices of features could be 

extracted from the wavelet analysis results, such as the energy of wavelet transform 

coefficients, the wavelet transform coefficients themselves, or any combination of the 

coefficients. Considering the linear unmixing problem, it is important to ensure the LMM 
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remains after the wavelet analysis and feature extraction. Otherwise, the linear unmixing 

problem will no longer exist. For example, a nonlinear wavelet energy feature can be 

extracted from the wavelet transform coefficients in the following manner, 

TE
S

E
S

EE
E CDDDF ],,,,[ 21 L
r

= ,                                           (3.23) 

where EF
r

 is referred to as a wavelet energy feature vector, the superscript T  is referred 

to as a vector transpose, and S  is the maximum scale (or coarsest scale) of discrete 

wavelet decomposition. E
jD  is referred to as the root mean square energy of the wavelet 

detail coefficient jD , for Sj ,,2,1 L= , and is computed as,  

∑
−

=

=
1

0

2)]([1 jK

k
j

j

E
j kD

K
D ,                                               (3.24) 

where jK  is the number of elements in the wavelet detail coefficient jD .  E
SC  is referred 

to as the root mean square energy of the wavelet approximation coefficient SC  at the 

coarsest scale S , and can be similarly computed using equation (3.24).  The use of the 

nonlinear wavelet energy feature, EF
r

, has proven successful in our previous research for 

the target detection and classification problems [5-6, 39-41]. However, it may not be a 

good choice for the linear unmixing problem any more, since it is obvious that the LMM 

no longer exists when using the nonlinear wavelet energy feature. Again, in Chapter V, it 

will be experimentally shown that the use of the wavelet energy feature actually reduces 

the abundance estimation performance. 

Therefore, linear features are preferred in the linear unmixing problem. Since 

wavelet transform is a linear transform, the wavelet transform coefficients at specific 
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scales could be directly used as linear features. That is, a linear wavelet feature, LF
r

, 

could be formed using the wavelet detail coefficients jD , 

T
jjjjL KDDDF )]1(,),1(),0([ −= L

r
,                                  (3.25) 

or using the wavelet approximation coefficients jC , 

T
jjjjL KCCCF )]1(,),1(),0([ −= L

r
,                                 (3.26) 

where jK  is the number of the wavelet detail coefficients or the wavelet approximation 

coefficients at scale j , and the superscript T  is referred to as a vector transpose. The use 

of linear wavelet features, LF
r

, does not change the LMM, and thus the linear unmixing 

problem still exists. The reason for directly using the scalar subsets of DWT coefficients, 

i.e., the DWT detail or approximation coefficients at specific scales, is because of the 

MRA property of the wavelet transform, discussed in previous section. The scalar subsets 

of DWT coefficients are the direct results from the MRA of hyperspectral signals and 

provide the direct insights into both global and fine information in hyperspectral signals 

at various resolutions. As a result, the use of the DWT scalar subset features, LF
r

, also 

provide a potential for improving the abundance estimation of endmembers using the 

LMM and the LSE technique. To use the linear wavelet features, LF
r

, in the LMM of 

equation (1.1), we simply substitute the mixed pixel vector, yr , and the endmember 

matrix, A , by their respective linear wavelet features. Then, abundances are estimated 

using the same LSE approach.  
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Note that the dimensionality of the linear wavelet features, LF
r

, i.e., the number of 

wavelet detail or approximation coefficients, jD  or jC , decreases with the increase of 

wavelet decomposition scale. Theoretically, the number of elements in 1+jD  or 1+jC  is 

half of the number of elements in jD  or jC .  Thus, the use of the linear wavelet features 

is also associated with a dimensionality reduction of hyperspectral signals. As for the 

dimensionality of the wavelet energy feature, EF
r

, its dimensionality is the maximum 

wavelet decomposition scale plus one, based on its definition in equation (3.23). For a 

hyperspectral signal of length 1400, the possible maximum wavelet decomposition scale 

is 10, and thus the dimensionality of feature vector EF
r

 is 11, which is much less than the 

dimensionality of 1400 of the original hyperspectral signal.  It is the DWT followed by 

the feature extraction that reduces the data volume (or dimensionality) of hyperspectral 

signals, and thus possibly reduces the computational cost of hyperspectral signal analysis. 

The linear wavelet features, LF
r

, defined in equations (3.25) and (3.26), are 

investigated in this study for improving the abundance estimation performance. At a 

specific wavelet decomposition scale, two sets of linear wavelet features are formed. One 

set is from the wavelet detail coefficients, and the other is from the wavelet 

approximation coefficients, according to equations (3.25) and (3.26).  Thus, for a L -scale 

DWT, there are L2  sets of linear wavelet features, LF
r

. Among these features, generally 

there exists one set of features that results in the best abundance estimation, which is 

referred to as an optimal set of linear wavelet features in this study. Determining the 

optimal DWT feature set leads to an optimization problem. Thus, an optimization 
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criterion needs to be determined firstly. In Chapter II, the mean square error (MSE) of 

abundance estimate is used as a criterion to evaluate the abundance estimation 

performance. Thus, it is proposed to be an optimization criterion to determine the optimal 

set of linear wavelet features. That is, the one producing the smallest MSE value is 

regarded as optimal set of linear wavelet features.  

This chapter discussed the DWT-based feature extraction and feature selection. 

Chapter II discussed the possibility using DWT-based features to improve the LSE of 

abundances. Based on these discussions, a DWT-based linear unmixing system is 

designed and implemented to both experimentally verify the proposed approaches and 

practically investigate the feasibility of applying the proposed approaches to solve real 

linear unmixing problems.  Details about the system design and implementation, as well 

as the system performance evaluation, will be provided in the next chapter. 
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CHAPTER  IV 
 

A DISCRETE WAVELET TRANSFORM BASED LINEAR UNMIXING SYSTEM 

FOR LEAST SQUARES ESTIMATION OF ABUNDANCES 

 
 A linear unmixing system based on feature extraction using the discrete wavelet 

transform (DWT) is designed and implemented. The system is specifically designed for 

the abundance estimation of a mixed pixel spectrum. That is, the system takes a mixed 

pixel spectrum as input. Assuming that the endmember spectra are known, the system 

outputs an estimate of the endmember abundances. The proposed DWT-based linear 

unmixing system basically consists of two modules. One is the pre-processing module. 

This module implements the DWT and the feature extraction of the input mixed pixel 

spectrum and the known endmember spectra. The following module is the abundance 

estimation, in which a constrained least squares estimation (CLSE) technique using a 

quadratic programming (QP) algorithm is performed to implement the abundance 

estimation. A system block diagram is shown in Figure 4.1. 

The proposed system is a supervised linear unmixing system. The system needs to 

be trained to determine an optimal set of DWT-based features. The system training is 

performed on a set of training data, which consist of the mixed pixel spectra with known 

abundances and the endmember spectra. The system outputs, i.e., the estimated 

abundances, are compared with the true abundances, and the estimation errors are 

computed. Among various sets of DWT-based features, the one set producing the
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smallest estimation error is regarded as an optimal set of DWT-based features. For this 

study, since the wavelet decomposition detail or approximation coefficients at each 

specific scale are utilized as features, as defined in equations (3.25) and (3.26), an 

optimal feature set also means to record two optimal parameters. One is the optimal 

wavelet decomposition scale, and the other is the detail or the approximation features. 

Note that the optimum is based on the given training data. For different sets of training 

data, the optimal results may not be different. However this is the essential idea of the 

supervised system. Thus, it is critical for a supervised system to obtain good training 

data, which can realistically represent the investigated situation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. A DWT-based linear unmixing system block diagram. 

Hyperspectral Signals 
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Discrete Wavelet Transform (DWT) 
and Feature Extraction 

Constrained Least Squares Estimation (CLSE) 
(Quadratic Programming Method) 

Estimated Abundances 

Pre-processing

Abundance Estimation



www.manaraa.com

 

 

57

The optimal feature determined in the system training phase will usually be tested 

to investigate how well it can work in the practical applications. Thus, a system testing 

procedure is performed. Another set of testing data are prepared, which are mutually 

exclusive from the training data. That is, the testing data do not include any information 

in the training data. This could avoid the bias introduced by the use of any information 

from the training data. In the system testing phase, the two optimal parameters recorded 

in the training phase, corresponding to the optimal DWT-based feature set for given 

training data, will be used to directly obtain the DWT-based features for testing data. 

Then abundance estimation is performed using the DWT-based features. Generally, the 

estimated results are quantitatively and/or qualitatively evaluated to investigate the 

estimation system performance. For this study, three quantitative evaluation metrics are 

used for the system performance evaluation: (i) the root mean square error of abundance 

estimation; (ii) the confidence of abundance estimation; and (iii) the abundance 

distribution diagram. These quantitative evaluation metrics, as well as the two modules of 

the system will be introduced in the following three sections in detail. 

 
4.1. Comparison of Various Pre-processing Methods 

The pre-processing is the first and core step of the proposed DWT-based linear 

unmixing system, because the proposed DWT and feature extraction approaches are 

implemented in this step. In Chapters II and III, we argued that this pre-processing step 

not only can reduce the computational cost in the next step of abundance estimation, but 

also more importantly provides the potential for improving the performance of abundance 

estimation. To show the possible improvement of abundance estimation provided by 
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using the DWT-based features, the abundances are also estimated using the original 

hyperspectral signals without any pre-processing. The results are compared with the 

abundance estimates using the DWT-based features.   

Note that the DWT followed by the feature extraction is not the only pre-

processing method. Two other pre-processing methods are also investigated in this study 

for the purpose of comparison. One is based on the discrete cosine transform (DCT), and 

the other is based on the principal components analysis (PCA) method, or the Karhunen-

Loève transform (KLT). Both the DCT and the PCA are linear orthonormal transform 

methods, which are extensively used in signal and image processing applications such as 

data compression and dimensionality reduction [1, 2, 52, 63, 72].  

In general, the DCT of a finite energy sequence with N  samples, )(nf , is 

defined as [63, 72], 

∑
−

=






 +

=
1

0 2
)12(cos)()(

N

n
k N

knnfkY πα ,   10 −≤≤ Nk                     (4.1) 

where )(kY  are DCT coefficients, and kα  are constant numbers defined as, 







−≤≤

=
=

1 1   ,2

0               ,1

NkN

kN
kα .                                           (4.2) 

The DCT is a real and orthonormal linear transform, and has excellent energy compaction 

for many applications. For example, the two-dimensional DCT has a property of 

excellent energy compaction for natural images, and thus has been adopted in the Joint 

Photographic Experts Group (JPEG) international standard for the still image 

compression [73]. Figure 4.2 shows an example of the DCT of a typical vegetation 
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hyperspectral reflectance curve. The curve is the same as the one used in the DWT 

example of Figure 3.3. Figure 4.2(a) shows the original hyperspectral signal and Figure 

4.2(b) shows its DCT coefficients. Specifically, Figure 4.2(c) shows the first 50 DCT 

coefficients. It can be seen the first 7 coefficients have relatively higher amplitude than 

others, and the first 30-40 coefficients include nearly all the energy of the signal. These 

observations clearly show the excellent energy compaction property of the DCT for 

hyperspectral signals, which also implies that excluding higher frequency DCT 

coefficients will not lose most information in the signal, while achieving the purpose of 

data dimensionality reduction. 
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Figure 4.2. An example of the DCT of a hyperspectral signal: 

(a) original hyperspectral signal; (b) DCT coefficients; 
and (c) The first 50 samples of the DCT coefficients. 
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The KLT of a finite energy sequence with N  samples, )(nf , is defined as [63, 

72], 

∑
−

=

=
1

0
)()()(

N

n
k nnfkZ φ ,   10 −≤≤ Nk                                     (4.3) 

where )(kZ  are KLT coefficients, and )(nkφ  are the eigenvector sequences of the 

correlation matrix, fR , of signal )(nf , i.e., there exists the following relationship,  

kkkfR φγφ
rr

= ,   10 −≤≤ Nk                                            (4.4) 

where T
kkkk N )]1(,),1(),0([ −= φφφφ L

r
 are vector forms of eigenvector sequences )(nkφ , 

and kγ  are the corresponding eigenvalues of correlation matrix, fR .  

If we arrange )(nkφ  in a decreasing order of magnitude of kγ  and compute the 

KLT coefficients using equation (4.3), then )(kZ  are also referred to as principal 

components of signal )(nf . Thus, the KLT of signal is also called the PCA of signal. 

The PCA has many good properties. First of all, the principal components, or KLT 

coefficients, are uncorrelated, since the correlation matrix, ZR , of principal 

components )(kZ  has the following form,  











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
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
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L

OOM

MO

L

,                                               (4.5) 

where 110 −>>> Nγγγ L  are eigenvalues of correlation matrix, fR , of signal )(nf . 

Note that off-diagonal elements of ZR  are all zero, i.e., the principal components, or KLT 
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coefficients, are uncorrelated. Secondly, note that according to the definition of 

correlation matrix, main-diagonal elements of ZR , i.e., eigenvalues kγ  of correlation 

matrix fR , are energy of principal components, or KLT coefficients. Since 

110 −>>> Nγγγ L  and typically 10 −>> Nγγ , the PCA also have a property of excellent 

energy compaction, i.e., most of energy is packed into the first several principal 

components. Thirdly, due to the excellent energy compaction property, i.e., 10 −>> Nγγ , 

excluding PCA coefficients associated with smaller eigenvalues will not lose most 

information in the signal, but achieve the purpose of reducing the data dimensionality. 

Figure 4.3 show an example of PCA of a typical vegetation hyperspectral reflectance 

curve. The curve is the same as one used in the DWT and DCT examples of Figures 3.3 

and 4.2. Figure 4.3(a) shows the original hyperspectral signal and Figure 4.3(b) shows its 

PCA coefficients. Specifically, Figure 4.3(c) shows the first 50 PCA coefficients. It can 

be seen the first 5-10 coefficients include nearly all the energy of the signal. The first 2 

coefficients have relatively higher amplitude than others, and especially the first 

coefficient has much higher amplitude than the rest. These observations indicate that the 

PCA shows a better energy compaction performance than the DCT for hyperpsectral 

signals.  

 Both the DCT and the PCA are linear orthonormal transforms. Thus, based on 

Theorem 3.1, simply applying all DCT or PCA coefficients to the abundance estimation 

will not help improving the estimation performance. Thus features have to be extracted 

from the DCT or PCA coefficients. Similar to the proposed DWT-based feature 

extraction, the DCT and PCA coefficients are directly used as features in order to retain 
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the validity of the LMM after feature extraction. Conventaionlly, the DCT- and PCA-

based features are formed using the first several DCT and PCA coefficients, since most 

of the energy, or most of the information, of the original signal concentrates in the first 

few coefficients. Taking the PCA as an example, the first feature set would be TZ )]0([ , 

the second one would be TZZ )]1(),0([ , and so on. Note that this conventional method 

works well when the aim of feature extraction is signal representation, such as the case of 

signal compression. However, when the aim of feature extraction is signal classification, 

such as the case of endmember abundance estimation, differences between signals take 

on importance, and simply using the first few large-amplitude coefficients may not be 

adequate. Therefore, an alternative approach is proposed for selecting a subset of 

transform coefficients. This alternative approach utilizes a sliding window of size L  to 

select coefficient subsets of size L . Specifically, taking the PCA as an example, the first 

feature set would be TLZZZ )](,),1(),0([ L , the second one would be 

TLZLZLZ )]2(,),2(),1([ L++ , and so on. That is, the shifting stepsize of the sliding 

window is also defiend as L  in this study.  

With all these PCA- and DCT-based feature sets obtained from the use of 

conventional and alternative appraoches, a feature optimization (or selection) problem 

exists, as in the situation of the DWT-based feature extraction. The same optimization 

criterion, as used for the optimal DWT-based feature selection, is used for the selection of 

the optimal DCT-based or PCA-based feature set. That is, among all sets of these 

features, the one producing the smallest abundance estimation error is regarded as the 

optimal feature set.  
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Figure 4.3. An example of the PCA of a hyperspectral signal: 

(a) original hyperspectral signal; (b) PCA coefficients; 
and (c) The first 50 samples of the PCA coefficients. 

 

In summary, three pre-processing methods are investigated and compared in this 

study: i) DWT-based feature extraction; ii) DCT-based feature extraction; iii) PCA-based 

feature extraction. In addition, the direct use of original hyperspectral signals, without 

any pre-processing operation, is investigated and compared as well. Note that for the 

DCT- and PCA-based pre-processing, both conventional and alternative approaches are 

investigated. For the DWT-based pre-processing, we focus on using one type of mother 

wavelet for the purpose of the simplicity and effectiveness, though there exist infinite 

number of mother wavelets. The mother wavelet used in the study is the Haar mother 

(a)

(b)

(c)
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wavelet, as introduced and discussed in Chapter III. The major reason for using the Haar 

mother wavelet is because it has been shown to be very successful in our previous 

research of target detection and classification applications [5-6, 39-41]. For example, in 

[5, 6], several commonly used orthogonal and biorthogonal mother wavelets, such as 

Daubechies, Coiflets, Symlets and B-splines biorthogonal wavelets [71], were 

investigated for the subpixel target detection. It was found that on average the Haar 

mother wavelet performed as well as or better than other investigated mother wavelets. 

 
4.2. Constrained Least Squares Estimation 

After the pre-processing, features extracted from endmember spectra and mixed 

pixel spectra are used to implement the least squares estimation (LSE) of abundances. In 

the practical implementation of the abundance estimation using LSE, to make the 

estimated abundances physically meaningful, two constraints are applied to LSE, forming 

the constrained LSE (CLSE). One constraint is nonnegativity, i.e., physically abundances 

should not be negative numbers. The other constraint is sum-to-one, i.e., it is assumed 

that the mixed pixel completely consists of the endmembers used for abundance 

estimation, and thus the sum of abundances is one. These two constraints can be 

mathematically expressed as, 

,0≥ix    Mi ,,2,1 L=                                              (4.6) 

∑
=

=
M

i
ix

1
1                                                                  (4.7) 

where M  is the number of endmembers and ix  (for Mi ,,2,1 L= ) is the estimated 

abundance corresponding to the thi  endmember.  
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 Typically, the CLSE of endmember abundances is implemented using the 

quadratic programming (QP) method [74], which is an iterative technique for solving 

constrained optimization problems. Based on the LMM defined in equation (1.1) and the 

LSE derivations defined in equations (2.1) to (2.7), the CLSE using the QP method may 

be used to obtain an optimal estimation of abundances by minimizing the following 

quadratic objective function, 

xAAxyAxxO TTTT rrrrr
+−= 2)( ,  subject to 0  and   1 ≥= i

T xxb rr
,                (4.8) 

where A  is the endmember spectrum matrix defined in equation (1.5), yr  is the mixed 

pixel spectrum vector defined in equation (1.2), 1
rr

=b  is a 1 vector, and 

T
Mxxxx ],,,[ 21 L

r
=  is an estimated abundance vector. The constraint 1=xb T rr

 is 

equivalent to the constraint in equation (4.7). In general, the quadratic objective function, 

)(xO r , is reduced after each iteration, and an optimal CLSE of endmember abundances 

can be obtained within a finite number of iterations. 

Note that, according to the LSE derivations defined in equations (2.1) to (2.7), 

minimizing the quadratic objective function )(xO r  is essentially minimizing the total error 

energy of abundance estimation defined in equation (2.2). Also note that AAR T=  is an 

auto-correlation matrix of endmember spectra, and yAd T rr
=  is a cross-correlation vector 

of endmember spectra and mixed-pixel spectrum. Thus, equation (4.8) can be expressed 

using the correlation matrix, 

xRxdxxO TT rrrrr
+−= 2)( .                                                 (4.9)  
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Compared to the CLSE, the LSE without any constraint is referred to as the 

unconstrained LSE (ULSE) in this study. Note that in the DWT-based linear unmixing 

system shown in Figure 4.1, if we substitute the CLSE by the ULSE, then the abundance 

estimation results are the ULSE of abundances, which can be directly calculated using 

equation (2.7). For this study, experiments using both CLSE and ULSE are implemented. 

The results and discussion are provided in the next chapter.  

 
4.3. System Performance Evaluation 

The output of the CLSE is an optimal abundance estimate, CLSxr , under constraints 

of nonnegativity and sum-to-one, 

T
CLSMCLSCLSCLS xxxx ],,,[ 21 L

r
= ,                                     (4.10) 

where M  is the number of endmembers  and superscript T  represents a vector transpose. 

The abundance estimation error exists between CLSxr  and the true abundance, oxr , defined 

in equation (1.3). By evaluating the estimation error, the performance of the proposed 

DWT-based linear unmixing system is investigated. In this study, three quantitative 

evaluation metrics for abundance estimation errors are proposed, which are valid for both 

CLSE and ULSE cases. For the convenience of mathematical description, a general 

expression of the abundance estimation result for both cases is used, 

T
LSMLSLSLS xxxx ],,,[ 21 L

r
= ,                                           (4.11) 

where M  is the number of endmembers and superscript T  represents a vector transpose. 

The first quantitative evaluation metric is the root-mean-square error (RMSE) of 

abundance estimation. For a given mixed pixel spectrum, each of endmembers 
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constituting the mixed pixel has its own abundance, LSix  (for Mi ,,2,1 L= ), and thus its 

own abundance estimation error, )( oiLSi xx − , where LSix  and oix  are defined in equations 

(4.11) and (1.3), respectively. For simplicity and effectiveness, the average value of 

abundance estimation error corresponding to each of the endmembers is utilized to 

represent the abundance estimation error of the mixed pixel. As a result, the error energy, 

Θ , of the abundance estimation for a given mixed pixel is defined as,  

∑
=

−=Θ
M

i
oiLSi xx

M 1

2)(1 ,                                               (4.12) 

where M  is the number of endmembers. Suppose that kΘ  (for Kk ,,2,1 L= ), represents 

the error energy of the abundance estimation corresponding to the thk  mixed pixel in a 

set of K  mixed pixel spectra. Then, the RMSE, Ω , of abundance estimations for all the 

mixed pixel spectra in the set is defined as, 

∑
=

Θ=Ω
K

k
kK 1

1 .                                                      (4.13) 

In general, Ω  indicates an average deviation of the abundance estimate from the 

true abundance. For this study, Ω  is utilized to evaluate the system performance from a 

global perspective, i.e., indicating the estimation deviation of the system on the average. 

It is also utilized as a criterion to determine an optimum feature during the system 

training phase. Note that the square value of the RMSE, 2Ω , is essentially equivalent to 

the mean square error (MSE), xΓ , defined in equation (2.10). The only difference in the 

concept is that in the definition of Ω  a sample mean corresponding to K  samples in the 

set of mixed pixel spectra is computed. However, in the definition of xΓ , a population 
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mean corresponding to infinite samples of mixed spectra is defined. That is, 2Ω  is a 

practical approximation of xΓ  for limited number of samples of mixed pixel spectra. 

When the number of samples goes to infinity, 2Ω  tends to xΓ .  

The second quantitative evaluation metric is the confidence of abundance 

estimation, which is defined as a probability of correct estimation given an error interval 

of abundance estimate. Given a mixed pixel spectrum, if its abundance estimations and 

the corresponding true abundances are LSix  and oix  (for Mi ,,2,1 L= ), defined in 

equations (4.11) and (1.3) respectively, then an average absolute error, η , between the 

estimated abundances and the true abundances is defined as, 

∑
=

−=
M

i
oiLSi xx

M 1
||1η ,                                               (4.14) 

where M  is the number of endmembers. Given an error interval, ε , if εη ≤ , then it is 

said that the abundance of the mixed pixel is correctly estimated. Otherwise, it is 

incorrectly estimated.  For the set of K  mixed pixel spectra, if there are KP ≤  mixed 

pixel spectra satisfying εη ≤ , i.e., the abundances of P  mixed pixels are correctly 

estimated, then the probability, )(ερ , of correct estimation given an error interval, ε , of 

abundance estimate can be computed as, 

K
P

=)(ερ .                                                        (4.15) 

Note that )(ερ  defines a system confidence of abundance estimation. That is, given an 

estimation error interval, )(ερ  is a measure of how confidently the system produces an 

abundance estimate which has an error less than the given estimation error interval.  
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Also note that according to the definition of the confidence and error interval, 

there are 1)(0 ≤≤ ερ  and 10 ≤≤ ε . Also note that when the error interval, ε , increases 

from 0 to 1, the confidence, )(ερ , increases from 0 to 1. That is, the confidence is a 

monotonically increasing function of the error interval. This is similar to a cumulative 

density function (CDF) of a random variable, where the random variable is ε  and the 

CDF is )(ερ .  A confidence curve can be formed when the error interval varies form 0 to 

1. A larger confidence value associated with a smaller error interval indicates a more 

accurate abundance estimate. 

The third quantitative evaluation metric of abundance estimation is the abundance 

distribution diagram. The diagram shows both the true abundances and the estimated 

abundances in two-dimensional plane, where the horizontal coordinate represents the 

number of given mixed spectra and the vertical coordinate represents the abundance 

associated with an endmember. Thus, for a M -endmember linear unmixing problem, M  

abundance distribution diagrams can be formed. In general, the abundance distribution 

diagram provides a visual and direct evaluation of how close the abundance estimation is 

to the truth of abundances.  

In summary, this chapter introduces the design and implementation of a DWT-

based linear unmixing system, as well as three quantitative metrics for the evaluation of 

the system performance. To practically investigate the performance of the proposed 

system, several sets of experiments are performed on practical hyperspectral signals. 

Details about the experiment design, results and discussions are presented in the next 

chapter.    
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CHAPTER  V 
 

EXPERIMENTS, RESULTS AND DISCUSSION  
 
 

 Generally, experiments of the linear unmixing can be divided into two broad 

categories. One category is the two-endmember linear unmixing, where it is assumed that 

the mixed pixel consists of two endmembers. That is, it is assumed that the region of 

interest (ROI) is covered only by two distinct ground-cover materials. For example, in the 

agriculture applications, the ROI may consist of the certain crop and the bare soil. In the 

target detection applications, it could be assumed that the ROI simply consists of the 

‘target’ and ‘non-target’. The other category is the multi-endmember linear unmixing, 

where it is assumed that the mixed pixel consists of more than two endmembers. This is a 

more typical case. For example, in the agriculture applications, the ROI may consist of 

the certain crop, the bare soil and typical weeds. In the forest monitoring applications, the 

ROI may consist of several different forest species. In the target detection applications, 

the ROI may consist of multiple targets.  

For this study, the experiments take an agriculture application as an example case 

for the study of linear spectral unmxing. The investigated ground cover materials are 

soybean, grass and soil. The experiment data are hyperspectral reflectance signals of 

these three types of materials. In general, three sets of experiments are designed and 

implemented to evaluate the proposed DWT-based linear spectral unmixing system. Two 

of the three sets of experiments investigate the two-endmember linear unmxing problem,
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and the third one investigates the multi-endmember linear unmixing problem. 

Specifically, the three sets of experiments are referred to as, respectively, Experiment I: 

soybean versus soil; Experiment II: soybean versus grass; and Experiment III: soybean, 

grass versus soil. Table 5.1 summarizes the information of the three sets of experiments.  

The details about the experiment data, design, results and discussion will be provided in 

the following sections. 

Table 5.1. Information summary of the three sets of experiments. 

Experiment Case Endmembers 
Experiment I (two-endmember case) soybean and soil 
Experiment II (two-endmember case) soybean and grass 

Experiment III (three-endmember case) soybean, grass and soil 
 

 

5.1. Preparation of Experiment Data 

Hyperspectral reflectance spectra are measured using a handheld 

spectroradiometer from Analytical Spectral Devices (ASD), Inc. [75]. This ASD’s 

instrument is called the FieldSpec Pro spectroradiometer, which has an ability to measure 

the electromagnetic radiance (and consequently derive the reflectance) in the wavelength 

range from 350nm to 2500nm. Typically, outputs of the instrument are hyperspectal 

reflectance curves of materials. Figure 5.1(a) shows a typical hyperspectral curve directly 

from the ASD’s spectroradiometer. The curve is a hyperspectral reflectance spectrum of 

the soybean. Note that there are two regions where a large amount of noise exists. One 

region is between ~1350nm and ~1430nm, and the other is between ~1800nm and 

~1950nm. These regions are typically called the water absorption bands, since most of 

the energy of the electromagnetic radiance in these regions is absorbed by water in the 
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atmosphere and in the ground cover materials. The parts of the hyperspectral signal in 

water absorption bands consist of the noise and do not include useful information. 

Therefore, samples in these regions are typically set to zeros, or interpolated using the 

samples immediately near the water absorption bands. For this study, the linear 

interpolation method is used to modify the parts of hyperspectral signals in the water 

absorption bands. Also note that after the second water absorption band, the signal is 

severely contaminated by noise. Therefore, the part of hyperspectral signals after the 

second water absorption band, together with the second water absorption band, is 

excluded for this study. That is, only the part of the hyperspectral signal before the 

second water absorption band, including the first water absorption bands interpolated, is 

used for the linear unmixing analysis in this study. Also note that singular samples appear 

in the first few spectral bands. This noise is introduced by the ASD’s measurement 

instrument itself. Thus, the first few spectral bands of hyperspectral signals are excluded 

as well. As a result, the final hyperspectral signals utilized for the linear unmixing 

analysis in this study consist of 1400 samples ranging from 354nm to 1753nm, as shown 

in Figure 5.1(b).  

The ground-cover materials investigated in the experiments include soybean 

(Glycine max), large crabgrass (Digitaria sanguinalis) and soil. The soil type is the 

Dundee silt loam, consisting of 26% sand, 56% silt and 18% clay. Using the ASD’s 

spectroradiometer, a set of 60 hyperspectral reflectance spectra from the three ground-

cover materials (20 spectra for each) were collected at the southern weed science research 

farm of the USDA Agricultural Research Service near Stoneville, Mississippi, USA, in 
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June, July and August, 2000. For each of the three ground-cover materials, half of the 20 

spectra are utilized for the system training, and the other half are utilized for the system 

testing. That is, the testing data do not include any information from the training data, 

which ensure a fair testing. Figure 5.2 shows the 60 hyperspectral signals which are 

utilized for the linear unmixing analysis in the dissertation. These signals are modified 

versions of the raw hyperspectral signals directly from the ASD’s spectroradiometer, by 

interpolating the first water absorption band and excluding the noise-contaminated parts 

of signals.  
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Figure 5.1. An example of ASD’s hyperspectral reflectance signal:  
(a) raw output signal from ASD’s spectroradiometer;  

(b) modified version of the signal by interpolating  
the water absorption band and excluding the  

noise-contaminated parts of the signal. 

(a)

(b)
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Figure 5.2. The ASD’s hyperspectral reflectance signals of soybean,  
Grass and soil utilized for the linear unmixing analysis  

in the dissertation. 
 

Note that the hyperspectral reflectance spectra from the handheld ASD’s 

spectroradiometer can be regarded as pure pixel spectra, because the handheld 

measurements are made such that only one type of material is in the sensor’s field of 

view. Moreover, the handheld measurements also reduce the atmospheric influence to the 

lowest limit, unlike the measurement using the spaceborne or airborne sensors where a 

large amount of atmospheric influence exists. Using these pure pixel spectra, mixed pixel 

spectra with known abundances can be synthesized. The main advantage of using the 

synthesized data is that the true abundances are known, which makes it possible to 
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implement a quantitative analysis of abundance estimation performance using the DWT-

based linear unmixing system.  

The mixed pixel spectra are synthesized in the following way. For the two-

endmember case, given two endmember spectra, 1rar  and 2rar , and their abundances, 1ox  

and 2ox , based on the LMM defined in equation (1.1), a mixed pixel spectrum, yr , can be 

synthesized as,  

2211 roro axaxy rrr
+= .                                                     (5.1) 

Note that unlike the definition of the LMM in equation (1.1), there is no error term in 

equation (5.1). This is because the data synthesis assumes that 1rar  and 2rar  are real 

endmembers forming the mixed pixel yr , i.e., the error is zero. Also note that according 

to the physical constraints on the abundances, as defined in equations (4.6) and (4.7), 

there exists the following relationship between abundances 1ox  and 2ox ,  

121 =+ oo xx .                                                              (5.2) 

When the values of 1ox  and 2ox  vary from 0.0 to 1.0 with an increment of 0.1, a set of 11 

mixed pixel spectra with 11 sets of different abundances are synthesized, excluding the 

possibly repeated combinations due to the relationship of equation (5.2). Similar 

relationships exist for the three-endmember case,  

332211 rororo axaxaxy rrrr
++= ,                                               (5.3) 

1321 =++ ooo xxx ,                                                       (5.4) 
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where 1rar , 2rar  and 3rar  represent the three real endmember spectra forming the mixed 

pixel yr , and 1ox , 2ox  and 3ox  are their corresponding abundances. Similarly, when the 

values of 1ox , 2ox  and 3ox  vary from 0.0 to 1.0 with an increment of 0.1, a set of 66 

mixed pixel spectra with 66 sets of different abundances are synthesized, excluding the 

possibly repeated combinations due to the relationship of equation (5.4). 

 The training data set includes 10 collected pure pixel spectra for each of the three 

materials: soybean, soil and grass. That is, there are 10 sets of 1rar , 2rar  and 3rar . For the 

two-endmember case, since 11 mixed pixel spectra with different abundances can be 

produced for each set of pure pixel spectra, a total of 110 mixed pixel spectra can be 

synthesized for all 10 sets of pure pixel spectra. Similarly, for the three-endmber case, 

since 66 mixed pixel spectra with different abundances can be produced for each set of 

pure pixel spectra, a total of 660 mixed pixel spectra can be synthesized for all 10 sets of 

pure pixel spectra. The testing data set includes the other 10 pure pixel spectra for 

soybean, soil and grass, respectively. Using the same synthesis method, for system 

testing, another 110 mixed pixel spectra are produced for the two-endmeber case and 

another 660 mixed pixel spectra are produced for the three-endmeber case. 

 For the implementation of the abundance estimation using the LSE method, only 

one endmember spectrum for each endmember is needed. That is, in equation (1.1) the 

endmember matrix, A , consists of one entry of endmember spectrum for each 

endmember. Thus, for this study the endmember spectra are formed using the average of 

all collected pure pixel spectra, i.e., 
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∑
=

=
K

k
krii a

K
a

1
,

1 rr ,                                                       (5.5) 

where iar  (for Mi ,,2,1 L= ), as defined in equation (1.6), is the thi  endmember spectrum 

for the thi  ground-cover material (or endmember), M  is the number of endmembers, 

kria ,
r  (for Mi ,,2,1 L=  and Kk ,,2,1 L= ) is the thk  pure pixel spectrum (and also real 

endmember spectrum forming a mixed pixel) collected from the thi  endmember, and K  

is the number of pure pixel spectra collected for the thi  endmember. Specifically, for the 

training or testing data set in this study, there are a total of 10 pure pixel spectra collected 

for each of endmembers, thus K  is equal to 10 for the case. For the two-endmember and 

three-endmember cases, M  are equal to 2 and 3, respectively. For this study, using the 

equation (5.5), the endmember spectra are formed only from the training data set. That is, 

the system testing uses the same endmember spectra formed in the system training. 

Figure 5.3 shows the formed endmember spectra of soybean, grass and soil, which are 

used for all the three sets of experiments in this study. 

In the theoretical analysis of the abundance estimation error in Chapter II, it is 

argued that the error term in equation (1.1) can be generally described as stemming from 

the difference between the real endmember spectra constituting the mixed pixel spectrum 

and the library endmember spectra utilized in the LSE of abundances. This can be clearly 

observed from the proposed mixed pixel synthesis procedure and endmember formation 

procedure. The mixed pixel spectra are synthesized using the collected pure pixel spectra, 

kria ,
r , and the endmember spectra, iar , are the average of all collected pure pixel spectra 
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from the training data set. Thus, a difference exists between kria ,
r  and iar . This difference 

simulates the general difference resulting in the error term in equation (1.1).  

In summary, the use of the handheld ASD’s hyperspectral signals makes the 

ground truth of the mixed pixel and endmember spectra available. The use of the 

synthesized hyperspectral signals makes the true abundances available. As a result, the 

performance of abundance estimation using the LSE method can be quantitatively 

evaluated, and the proposed DWT-based feature extraction approaches for improving the 

abundance estimation can be quantitatively analyzed.  
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Figure 5.3. Endmember spectra of soybean, grass and soil utilized for  

the linear unmixing analysis in the dissertation. 
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5.2. Abundance Estimation Results for Experiment I: Soybean versus Soil 

Experiment I investigates a two-endmember linear unmixing case. The two 

endmembers are soybean and soil. It is investigated as an example of a generic 

application where the ROI consists of the vegetation and the non-vegetation.  

 
5.2.1. System Training Results and Feature Selection for Experiment I 

Based on the proposed DWT-based linear unmixing system, the DWT using the 

Haar mother wavelet is first applied to the two endmember spectra and the 110 

synthesized mixed pixel spectra using the training data set. The DWT is performed until 

the 9th decomposition scale. Thus 9 sets of wavelet detail coefficient features and 9 sets 

of wavelet approximation coefficient features are extracted according to equations (3.25) 

and (3.26). For each of the 18 sets of DWT-based features, both the ULSE and the CLSE 

of abundances are completed. The RMSE of the abundance estimation is computed and 

utilized as the criterion of selecting the optimal DWT-based feature set. Table 5.2 

summarizes the RMSE results based on the training data set, where “ORG” represents the 

use of the original hyperspectral signal without any pre-processing, and “All” represents 

the use of all PCA or DCT coefficients as features for abundance estimation. 

Results in Table 5.2 show that when using the original hyperspectral signals, 

conventional PCA- and DCT-based features for the abundance estimation, the ULSE 

method produces a smaller RMSE, i.e., a better abundance estimation, than the CLSE 

method. However, as discussed in Chapter IV, in order to make the abundance estimation 

results physically meaningful, in practical abundance estimation applications two 

constraints defined in equation (4.6) and (4.7) need to be taken into account. Therefore, 
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for this study the focus is on the CLSE of abundances, and the optimal DWT-based 

feature set is determined according to the CLSE results. 

Using the CLSE method for the abundance estimation, the wavelet detail features 

at the 7th decomposition scale, “D7”, produces the smallest RMSE value, 0.0924, among 

the 18 sets of DWT-based features. It is interesting to note that this RMSE value is even 

smaller than all RMSE values when using the ULSE method. That is, it is possible that 

the CLSE method can produce a better abundance estimation than the ULSE method 

when using the DWT-based features for the abundance estimation.  

 

Table 5.2. RMSE of abundances estimation based on training data set  
for feature selection in Experiment I (soybean vs. soil). 

 
  DWT     PCA     DCT   

Coeffs ULSE CLSE # Coeffs ULSE CLSE # Coeffs ULSE CLSE 
D1 0.1167 0.1154 1 0.9008 0.1333 1 0.8507 0.1645
D2 0.1094 0.1047 2 0.1069 0.1304 2 0.1169 0.1610
D3 0.1177 0.1053 3 0.1075 0.1303 3 0.1038 0.1338
D4 0.1111 0.1058 4 0.1076 0.1303 4 0.1068 0.1335
D5 0.1246 0.1061 5 0.1076 0.1303 5 0.1063 0.1324
D6 0.1256 0.1141 6 0.1075 0.1303 6 0.1068 0.1324
D7 0.1046 0.0924 7 0.1075 0.1303 7 0.1073 0.1314
D8 0.1615 0.1125 8 0.1075 0.1303 8 0.1073 0.1314
D9 0.1300 0.1087 9 0.1075 0.1303 9 0.1075 0.1315
A1 0.1074 0.1303 10 0.1075 0.1303 10 0.1076 0.1314
A2 0.1074 0.1303 11 0.1075 0.1303 11 0.1071 0.1306
A3 0.1074 0.1303 12 0.1075 0.1303 12 0.1070 0.1305
A4 0.1073 0.1304 13 0.1075 0.1303 13 0.1070 0.1305
A5 0.1073 0.1305 14 0.1075 0.1303 14 0.1070 0.1305
A6 0.1072 0.1308 15 0.1075 0.1303 15 0.1073 0.1305
A7 0.1076 0.1314 16 0.1075 0.1303 16 0.1074 0.1305
A8 0.1037 0.1364 17 0.1075 0.1303 17 0.1074 0.1305
A9 0.0998 0.1405 18 0.1074 0.1303 18 0.1075 0.1304

ORG 0.1074 0.1303 All 0.1074 0.1303 All 0.1074 0.1303
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Since the DWT-based feature set of “D7” produced the smallest RMSE value, it is 

determined as an optimal set of DWT-based features for the abundance estimation, which 

will also be used in the system testing phase. As discussed in Chapter IV, two optimal 

parameters are recorded for the optimal set of DWT-based features. One optimal 

parameter is the optimal decomposition scale, which is the “7” for this case. The other 

optimal parameter is the detail or the approximation features, which is the detail (“D”) for 

this case. During the system testing phase, the two recorded optimal parameters can be 

used to directly obtain the optimal DWT-based feature set.  

Also note that using the CLSE method the wavelet detail features generally result 

in a smaller RMSE of abundance estimation than the wavelet approximation features. 

This observation indicates that the multiresolution analysis of wavelet transform extracts 

the detailed information from the endmember spectra, using which it is possible to better 

distinguish two endmembers, soybean and soil. As a result, the abundance estimation 

error is reduced. In contrast, the approximation information does not help to improve the 

abundance estimation at all, since using the wavelet approximation features brings the 

same or worse RMSE values, compared with using the original signals.  

Training results in Table 5.2 also show that using the conventional PCA-based 

features and DCT-based features do not provide any help for improving the abundance 

estimation, since they all produce the same or worse RMSE, compared with using the 

original signals. Note that, however, for the PCA method, using the first three principal 

components (or coefficients) as feature leads to the same abundance estimation 

performance as using the original signals or all PCA coefficients. Compared with using 
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original signals, the PCA-based feature with 3 elements greatly reduces the 

dimensionality (or volume) of data, and thus could greatly reduce the computational cost 

of abundance estimation. This is a merit of using PCA-based pre-processing, even though 

it does not help improve the performance of abundance estimation. The same conclusion 

is valid for the DCT-based pre-processing, where using the first 18 DCT coefficients as 

the feature set leads to nearly the same RMSE of abundance estimation as using the 

original signals or all DCT coefficients. The PCA-based feature with the first 3 

coefficients and the DCT-based feature with the first 18 coefficients are regarded as the 

“optimal” features for PCA and DCT pre-processing, respectively. Note that this 

“optimum” is in the sense of reducing the computational cost, rather than improving the 

abundance estimation performance. However, these “optimal” PCA- and DCT-based 

features will also be used in the system testing phase, for the purpose of comparing with 

the optimal DWT-based features.  

 
5.2.2. System Testing Results and Performance Evaluation for Experiment I 

The optimal features extracted using the three types of pre-processing methods, 

DWT, PCA and DCT, are further investigated in the system testing phase. The CLSE 

results of abundances from using the three types of features and the original hyperpsectral 

signals are quantitatively evaluated using the proposed three metrics, the RMSE of 

abundance estimation, the confidence of abundance estimation, and the abundance 

distribution diagram. For a comparison, the ULSE results of abundances are obtained and 

evaluated as well.  
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Figure 5.4 shows the RMSE results based on the testing data set. When using the 

original hyperspectral signals, the PCA-based features or the DCT-based features, the 

RMSE of abundance estimation is ~0.1, which indicates the average deviation of 

abundance estimation is ~0.1. That is, for example, if the truth of abundance is 0.4, then 

on average the estimated abundance could be any value between ~0.4±0.1. When using 

the DWT-based feature, the RMSE of abundance estimation, or the average deviation of 

abundance estimation, is ~0.05. That is, for the same example, the estimated abundance 

could lie between  ~0.4±0.05 on average. This improvement indicates that on average the 

deviation of abundance estimate is reduced by ~50%, which is a promising improvement 

in the context of abundance estimation.  
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Figure 5.4. RMSE of abundance estimation based on testing data set  
in Experiment I (soybean vs. soil). 
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Figure 5.5 shows confidence curves of the CLSE of abundances, where the error 

interval ranges from 0 to 0.3. When the error interval is greater than 0.3, all confidence 

values are 1, thus they are no longer shown in the figure for the purpose of conciseness. 

Note that confidence curves for using the original hyperspectral signal, the PCA-based 

features and the DCT-based features almost overlap one another. This indicates that 

compared with using the original hyperspectral signals, using the PCA- and DCT-based 

features does not provide any improvement of abundance estimation other than reducing 

the computational cost. However, using the DWT-based feature set does provide a higher 

confidence than using the original hyperspectral signal, when given error intervals range 

from 0.05 to 0.2. For example, when the given error interval is 0.1, using the DWT-based 

feature results in a ~95% confidence, however using the other two types of features or the 

original hyperspectral signals only results in a ~60% confidence. That is, if the true 

abundance of an endmember is 0.4, then the confidence that the estimated abundance 

could lie between ~0.4±0.1 is ~95% when using the DWT-based feature, and ~60% when 

using the original hyperspectral signal, PCA- or DCT-based features.  To reach ~95% 

confidence, the error interval has to be increased to 0.2 when using the original 

hyperspectral signal, PCA- or DCT-based features. 
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Figure 5.5. Confidence of abundance estimation based on testing data set  
in Experiment I (soybean vs. soil). 

 

Figures 5.6(a) and (b) show the abundance distribution diagrams of soybean and 

soil, respectively. Note that the diagrams reflect the relationship of abundances for two 

endmembers defined in equation (5.2). That is, the sum of abundances for two 

endmembers is 1. In Figure 5.6, the true abundances and the abundance estimation results 

from using the original hyperspectral signal and the DWT-based features are shown. 

Clearly, the use of the DWT-based features leads to a better abundance estimation than 

the use of the original hyperspectral signals, because the abundance distribution 

corresponding to the DWT-based features is much closer to the true abundance, as 

compared with abundance distribution corresponding to the original hyperspectral 

signals. 
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Figure 5.6. Abundance distribution diagrams based on testing data set in  

Experiment I (soybean vs. soil): (a) for soybean; and (b) for soil. 
 

 
5.3. Abundance Estimation Results for Experiment II: Soybean versus Grass 

Experiment II investigates another two-endmember linear unmixing case. The two 

endmembers are soybean and grass. It is investigated as an example of a generic 

application where the ROI consists of two similar vegetations. This is a more difficult 

unmixing case than Experiment I of soybean versus soil, since the two vegetations 

investigated have much similar hyperpsectral reflectance spectra. However, phenomena 

appearing in Experiment I can be similarly observed in this experiment. 

(a)

(b)
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5.3.1. System Training Results and Feature Selection for Experiment II 

Similar to Experiment I, the system training is first accomplished to determine the 

optimal feature set. The DWT using the Haar mother wavelet and the feature extraction 

are performed on the two endmember spectra and the 110 synthesized mixed pixel 

spectra. Both the ULSE and the CLSE of abundances are implemented, and the RMSE of 

the abundance estimation is calculated. The RMSE results from using the CLSE are 

utilized to determine the optimal DWT-based feature set. Table 5.3 summarizes the 

RMSE results based on the training data set.  

 
Table 5.3. RMSE of abundances estimation based on the training data set  

for feature selection in Experiment II (soybean vs. grass). 
 

  DWT     PCA     DCT   
Coeffs ULSE CLSE # Coeffs ULSE CLSE # Coeffs ULSE CLSE 

D1 0.1885 0.1587 1 0.5820 0.3327 1 0.5916 0.3158
D2 0.1856 0.1608 2 0.1309 0.2960 2 0.1341 0.2953
D3 0.1909 0.1739 3 0.1302 0.2960 3 0.1292 0.3018
D4 0.1875 0.1832 4 0.1300 0.2959 4 0.1275 0.3009
D5 0.1723 0.1530 5 0.1298 0.2959 5 0.1274 0.3012
D6 0.1707 0.2820 6 0.1299 0.2959 6 0.1299 0.2969
D7 0.1416 0.2216 7 0.1297 0.2959 7 0.1302 0.2978
D8 0.1927 0.1519 8 0.1297 0.2959 8 0.1299 0.2976
D9 0.1478 0.1153 9 0.1297 0.2959 9 0.1299 0.2978
A1 0.1297 0.2959 10 0.1297 0.2959 10 0.1300 0.2963
A2 0.1297 0.2959 11 0.1297 0.2959 11 0.1296 0.2969
A3 0.1297 0.2959 12 0.1297 0.2959 12 0.1297 0.2968
A4 0.1297 0.2952 13 0.1297 0.2959 13 0.1291 0.2967
A5 0.1296 0.2954 14 0.1297 0.2959 14 0.1291 0.2967
A6 0.1297 0.2955 15 0.1297 0.2959 15 0.1292 0.2969
A7 0.1300 0.2960 16 0.1297 0.2959 16 0.1289 0.2968
A8 0.1284 0.2849 17 0.1297 0.2959 17 0.1290 0.2968
A9 0.1343 0.2917 18 0.1297 0.2959 18 0.1291 0.2964

ORG 0.1297 0.2959 All 0.1297 0.2959 All 0.1297 0.2959
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Using the CLSE method for the abundance estimation, the wavelet approximation 

features, the PCA-based features and the DCT-based features do not provide much help 

on improvement of abundance estimation, but do provide a potential to reduce the 

computational cost. For example, in this experiment a PCA-based feature set consisting 

of the first 4 principal components (or coefficients) produces the smallest RMSE among 

all PCA-based features, and thus can be regarded as an “optimal” PCA-based feature set. 

A DCT-based feature set consisting of the first 2 coefficients produces the smallest 

RMSE among all DCT-based features, and thus can be regarded as an “optimal” DCT-

based feature set. Also note that the wavelet detail features do provide an improvement in 

abundance estimation. Among all wavelet detail feature sets, the one at 9th decomposition 

scale, “D9”, produces the smallest RMSE value, 0.1153. Thus, the feature set of “D9” is 

determined as the optimal DWT-based features, and the two optimal parameters, “D” and 

“9”, are recorded for the direct obtaining of DWT-based features during the system 

testing phase.  

 
5.3.2. System Testing Results and Performance Evaluation for Experiment II 

The optimal features extracted using the three types of pre-processing methods, 

DWT, PCA and DCT, are further investigated in the system testing phase. The CLSE 

results of abundances from using the three types of features and the original hyperpsectral 

signals are quantitatively evaluated using the proposed three metrics, the RMSE of 

abundance estimation, the confidence of abundance estimation, and the abundance 

distribution diagram. For a comparison, the ULSE results of abundances are obtained and 

evaluated as well. 
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 Figure 5.7 shows the RMSE results based on the testing data set. When using the 

original hyperspectral signals, the PCA-based or the DCT-based features, the RMSE of 

abundance estimation (or the average deviation of abundance estimation) is ~0.2. 

However, when using the DWT-based features, the RMSE of abundance estimation is 

reduced to ~0.14. That is, on average the deviation of abundance estimate is reduced by 

~30%. This is a promising improvement, considering that the Experiment II is a much 

more difficult two-endmember abundance estimation scenario than Experiment I.  

Figure 5.8 shows confidence curves of the CLSE of abundances, where the error 

interval ranges from 0 to 0.65. When the error interval is greater than 0.65, all confidence 

values are 1, thus they are no longer shown in the figure for the purpose of conciseness. 

Again, note that confidence curves for using the original hyperspectral signals, the PCA-

based features and the DCT-based features almost overlap one another. This indicates 

that using the PCA- and DCT-based features does not provide any improvement of 

abundance estimation other than reducing the computational cost, compared with using 

the original hyperspectral signals. However, using the DWT-based feature set does 

provide a higher confidence than using the original hyperspectral signal, the PCA- or 

DCT-based features, when given error intervals range form 0.1 to 0.4. For example, when 

the given error interval is 0.275, using the DWT-based feature results in a ~95% 

confidence, however using the other two types of features or the original signals only 

results in a ~80% confidence. To reach ~95% confidence, the error interval has to be 

increased to 0.425 when using the original hyperspectral signal, PCA- or DCT-based 

features. 
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Figure 5.7. RMSE of abundance estimation based on testing data set 
in Experiment II (soybean vs. grass). 
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Figure 5.8. Confidence of abundance estimation based on testing data set  
in Experiment II (soybean vs. grass). 
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Figures 5.9(a) and (b) show the abundance distribution diagrams of soybean and 

grass, respectively. Note that the use of the DWT-based features leads to a better 

abundance estimation than the use of the original hyperspectral signals, because the 

abundance distribution corresponding to the DWT-based features is closer to the true 

abundance, as compared with abundance distribution corresponding to the original 

hyperspectral signals. 
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Figure 5.9. Abundance distribution diagrams based on testing data set in  

Experiment II (soybean vs. grass): (a) for soybean; and (b) for grass. 

(a)

(b)
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In general, worse abundance estimation results are obtained in Experiment II, as 

compared with the results of Experiment I. This is predictable because Experiment II is a 

more difficult two-endmember linear unmixing case than Experiment I. However, in both 

Experiment I and II, the use of the DWT-based features does improve the LSE of 

abundances of two endmembers.  

 
5.4. Abundance Estimation Results for Experiment III:  

Soybean, Grass versus Soil 

Experiment III is a three-endmember linear unmixing case, which is designed and 

implemented as an example of the mulit-endmember linear unmixing case. The three 

endmembers are soybean, grass, and soil. It is investigated as an example of a generic 

application where the ROI consists of two different types of vegetations and one type of 

non-vegetation. 

 
5.4.1. System Training Results and Feature Selection for Experiment III 

Similar to Experiment I and II, the system training is first accomplished to 

determine the optimal feature set. The DWT using the Haar mother wavelet and the 

feature extraction are performed on the three endmember spectra and the 660 synthesized 

mixed pixel spectra. Both the ULSE and the CLSE of abundances are implemented, and 

the RMSE of the abundance estimation is calculated. The RMSE results from using the 

CLSE are utilized to determine the optimal DWT-based feature set. Table 5.4 

summarizes the RMSE results based on the training data set.  
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Table 5.4. RMSE of abundances estimation based on training data set 
for feature selection in Experiment III (soybean, grass and soil). 

  DWT     PCA     DCT   
Coeffs ULSE CLSE # Coeffs ULSE CLSE # Coeffs ULSE CLSE 

D1 0.1384 0.1161 1 Inf 0.3140 1 0.7126 0.3328
D2 0.1246 0.1150 2 0.4824 0.1498 2 0.8945 0.1555
D3 0.1320 0.1188 3 0.1620 0.1491 3 0.3694 0.1524
D4 0.1274 0.1191 4 0.1444 0.1491 4 0.1765 0.1517
D5 0.1278 0.1120 5 0.1425 0.1491 5 0.1743 0.1517
D6 0.1223 0.1254 6 0.1306 0.1491 6 0.1686 0.1501
D7 0.1177 0.1119 7 0.1267 0.1491 7 0.1621 0.1502
D8 0.3072 0.1323 8 0.1266 0.1491 8 0.1509 0.1501
D9 0.1842 0.1200 9 0.1260 0.1491 9 0.1494 0.1501
A1 0.1250 0.1491 10 0.1260 0.1491 10 0.1429 0.1496
A2 0.1250 0.1491 11 0.1259 0.1491 11 0.1435 0.1495
A3 0.1250 0.1491 12 0.1259 0.1491 12 0.1437 0.1495
A4 0.1252 0.1490 13 0.1258 0.1491 13 0.1362 0.1495
A5 0.1261 0.1491 14 0.1258 0.1491 14 0.1347 0.1495
A6 0.1296 0.1494 15 0.1258 0.1491 15 0.1287 0.1495
A7 0.1408 0.1497 16 0.1258 0.1491 16 0.1270 0.1494
A8 0.1377 0.1488 17 0.1254 0.1491 17 0.1272 0.1494
A9 0.8096 0.1522 18 0.1254 0.1491 18 0.1256 0.1493

ORG 0.1250 0.1491 All 0.1250 0.1491 All 0.1250 0.1491
 

 

Using the CLSE method for the abundance estimation, the wavelet approximation 

features, the PCA-based features and the DCT-based features do not provide much help 

on improvement of abundance estimation, but do provide a potential to reduce the 

computational cost. For example, in this experiment a PCA-based feature set consisting 

of the first 3 principal components (or coefficients) produces the smallest RMSE among 

all PCA-based features, and thus can be regarded as an “optimal” PCA-based feature set. 

A DCT-based feature set consisting of the first 18 coefficients produces the smallest 

RMSE among all DCT-based features, and thus can be regarded as an “optimal” DCT-

based feature set. Also note that the wavelet detail features do provide an improvement in 
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abundance estimation. Among all wavelet detail feature sets, the one at 7th decomposition 

scale, “D7”, produces the smallest RMSE value, 0.1119. Thus, the feature set of “D7” is 

determined as the optimal DWT-based features, and the two optimal parameters, “D” and 

“7”, are recorded for the direct obtaining of DWT-based features during the system 

testing phase. 

It is interesting to note that using the ULSE method for the abundance estimation, 

the RMSE value is infinite when using only the first coefficient of PCA as feature sets, 

and the RMSE values are unusually large when using the first one or two coefficients of 

PCA or DCT as feature sets. This phenomenon can also be observed in the results of 

Experiments I and II, as shown in Tables 5.2 and 5.3. Based on the theoretical analysis in 

Chapter II, this phenomenon stems from the fact that the correlation matrix of 

endmember spectra is singular or close to being singular, corresponding to the infinite 

RMSE value or the unusually large RMSE values respectively. The singular, or close-to-

singular, correlation matrix of endmember spectra implies an unstable abundance 

estimation according to the discussion in Section 2.4. Thus, it is not a good choice to use 

only the first one or two coefficients of PCA or DCT as features for the abundance 

estimation. The further discussion about the stability of the least squares solution of 

abundance estimation is provided in Section 5.6. 

 
5.4.2. System Testing Results and Performance Evaluation for Experiment III 

The optimal features extracted using the three types of pre-processing methods, 

DWT, PCA and DCT, are further investigated in the system testing phase. The CLSE 

results of abundances from using the three types of features and the original hyperpsectral 
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signals are quantitatively evaluated using the proposed three metrics, the RMSE of 

abundance estimation, the confidence of abundance estimation, and the abundance 

distribution diagram. For a comparison, the ULSE results of abundances are obtained and 

evaluated as well. 

Figure 5.10 shows the RMSE results based on the testing data set. When using the 

original hyperspectral signals, the PCA-based or the DCT-based features, the RMSE of 

abundance estimation (or the average deviation of abundance estimation) is ~0.14. 

However, when using the DWT-based features, the RMSE of abundance estimation is 

reduced to ~0.1. That is, on average the deviation of abundance estimate is reduced by 

~30%. This is a promising improvement, considering the copmplicated abundance 

estimation scenario where there are three endmembers and two of them are vegetations 

with much similar hyperpsectral reflectance spectra.  
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Figure 5.10. RMSE of abundance estimation based on testing data set  
in Experiment III (soybean, grass vs. soil). 
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Figure 5.11 shows confidence curves of the CLSE of abundances, where the error 

interval ranges from 0 to 0.45. When the error interval is greater than 0.45, all confidence 

values are 1, thus they are no longer shown in the figure for the purpose of conciseness. 

Note that confidence curves for using the original hyperspectral signals, the PCA-based 

features and the DCT-based features almost overlap one another. This indicates that using 

the PCA- and DCT-based features does not provide any improvement of abundance 

estimation other than reducing the computational cost, compared with using the original 

hyperspectral signals. However, using the DWT-based feature set does provide a higher 

confidence than using the original hyperspectral signal, the PCA- or DCT-based features, 

when given error intervals range form 0.05 to 0.2. For example, when the given error 

interval is 0.175, using the DWT-based feature results in a ~95% confidence, however 

using the other two types of features or the original signals only results in a ~80% 

confidence. To reach ~95% confidence, the error interval has to be increased to 0.225 

when using the original hyperspectral signal, PCA- or DCT-based features. 
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Figure 5.11. Confidence of abundance estimation based on testing data set  
in Experiment III (soybean, grass vs. soil). 
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Figures 5.12, 5.13 and 5.14 show the abundance distribution diagrams of soybean 

grass and soil, respectively. Recall that a total of 660 mixed pixels are tested in this 

experiment. For each of the three endmembers, abundance distribution corresponding to 

the 660 mixed pixels are shown in three diagrams, where the upper diagram shows the 

abundance distribution for the first 220 mixed pixels, the middle diagram shows the 

abundance distribution for the second 220 mixed pixels, and the lower diagram shows the 

abundance distribution for the final 220 mixed pixels. Note that the diagrams reflect the 

relationship of abundances for three endmembers defined in equation (5.4). That is, the 

sum of abundances for three endmembers is 1. In Figures 5.12, 5.13 and 5.14, the true 

abundances and the abundance estimation results from using the original hyperspectral 

signal and the DWT-based features are shown. Note that the use of the DWT-based 

features leads to a better abundance estimation than the use of the original hyperspectral 

signals, because the abundance distribution corresponding to the DWT-based features is 

closer to the true abundance, as compared with abundance distribution corresponding to 

the original hyperspectral signals. 
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Figure 5.12. Abundance distribution diagrams for soybean based on 
testing data set in Experiment III (soybean, grass vs. soil): 

(a) the first 220 samples; (b) the second 220 samples; 
and (c) the final 220 samples. 
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Figure 5.13. Abundance distribution diagrams for grass based on  
testing data set in Experiment III (soybean, grass vs. soil):  

(a) the first 220 samples; (b) the second 220 samples; 
and (c) the final 220 samples. 
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Figure 5.14. Abundance distribution diagrams for soil based on  
testing data set in Experiment III (soybean, grass vs. soil):  

(a) the first 220 samples; (b) the second 220 samples; 
and (c) the final 220 samples. 
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 In summary, all three sets of experiments show that the use of the DWT-based 

features improves the abundance estimation using the LSE method. For the relatively 

simple abundance estimation scenario of Experiment I, the improvement is relatively 

high. For more complicated abundance estimation scenarios of Experiment II and III, the 

improvement is much less. In general, the average deviation of abundance estimation is 

reduced by 30-50%.  The experiments also show that the use of the PCA- and DCT-based 

features do not provide any improvement of abundance estimation using the LSE method, 

but they do provide the potential for reducing the computational cost of abundance 

estimation by using the lower-dimensional features. Another advantage of using the 

DWT-based features is that it provides the potential for improving the stability of 

abundance estimation solutions, which will be discussed in Section 5.6. 

 
5.5. Discussion about Linearity of Features 

Theorem 3.1 argues that an orthonormal linear transform does not change the least 

square solution of abundance estimation. The DWT using the Haar mother wavelet, the 

PCA and the DCT are all orthonormal linear transforms. Thus, using all the transform 

coefficients from any of the three transforms should produce the same abundance 

estimates as using the original hyperspectral signals. This is proven true from the 

experiment results of the three sets of experiments in this study. The experiments are 

performed on the testing data sets of hyperspectral signals. For the simplicity, Figure 5.15 

shows an abundance distribution diagram of soybean from Experiment I, as an example 

of all experiment results. Figure 5.15(a) shows the results of using all DWT coefficients 

and the original hyperspectral signals, Figure 5.15(b) shows the results of using all PCA 
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coefficients and the original hyperspectral signals, and Figure 5.15(c) shows the results of 

using all DCT coefficients and the original hyperspectral signals. Clearly, they all 

produce the same abundance estimations. 
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Figure 5.15. Abundance distribution diagrams for soybean based on  

testing data set in Experiment I (soybean vs. soil) when using all  
DWT, PCA, or DCT coefficients as features: (a) when using all  

DWT coefficients; (b) when using all PCA coefficients;  
(c) when using all DCT coefficients.   
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It is also argued in Chapter III that it is important to ensure the LMM defined in 

equation (1.1) remains after the wavelet analysis and feature extraction. The nonlinear 

wavelet energy feature, which has proven successful in our previous research for target 

detection and classification problem [5-6, 39-41], is no longer a good choice for the linear 

unmixing problem. To verify this argument, the three sets of experiments are 

implemented using the nonlinear DWT-based energy features. The abundance estimation 

results are compared with ones from using the linear DWT-based coefficient features and 

the original hyperspectral signals. Note that the linear DWT-based features utilized in this 

comparison are the DWT-based optimal feature set determined in the system training 

phase. The nonlinear DWT-based energy feature is calculated according to equation 

(3.23). All experiments are performed on the testing data sets of hyperspectral signals. 

 The resulting abundance estimations are evaluated using two metrics: the RMSE 

of abundance estimation and the confidence of abundance estimation. The RMSE results 

are shown in Figure 5.16, 5.18 and 5.20, for Experiment I, II and III, respectively.  The 

confidence curves of the CLSE of abundances for the three sets of experiments are shown 

in Figure 5.17, 5.19 and 5.21, respectively. Clearly, it can be seen that using the nonlinear 

DWT-based energy features results in worse abundance estimation than using the linear 

DWT-based coefficient features, and even than using the original hyperspectral signals. 

Note that the use of the nonlinear DWT energy feature does reduce the dimensionality (or 

volume) of hyperspectral signals, but at the cost of losing abundance estimation accuracy. 

This is different from the case of using the PCA- or DCT-based features, where the 

dimensionality of hyperspecral signals is reduced without degrading the abundance 
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estimation performance, as compared to using the original hyperspectral signal. In short, 

it is a better choice to use the linear features when using the LMM for the abundance 

estimation. 
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Figure 5.16. RMSE of abundance estimation based on testing data set  
for comparison of the linear coefficient feature and the nonlinear  

energy feature of DWT in Experiment I (soybean vs. soil). 
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Figure 5.17. Confidence of abundance estimation based on testing data set  
for comparison of the linear coefficient feature and the nonlinear  

energy feature of DWT in Experiment I (soybean vs. soil). 
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Experiment II 
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Figure 5.18. RMSE of abundance estimation based on testing data set  
for comparison of the linear coefficient feature and the nonlinear  

energy feature of DWT in Experiment II (soybean vs. grass). 
 
 
 

Experiment II

0

0.2

0.4

0.6

0.8

1

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75

Error Interval

C
on

fid
en

ce

ORG DWT Linear Feature DWT Energy Feature
 

Figure 5.19. Confidence of abundance estimation based on testing data set  
for comparison of the linear coefficient feature and the nonlinear  

energy feature of DWT in Experiment II (soybean vs. grass). 
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Experiment III
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Figure 5.20. RMSE of abundance estimation based on testing data set for 
comparison of the linear coefficient feature and the nonlinear energy  

feature of DWT in Experiment III (soybean, grass vs. soil). 
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Figure 5.21. Confidence of abundance estimation based on testing data set for 
comparison of the linear coefficient feature and the nonlinear energy  

feature of DWT in Experiment III (soybean, grass vs. soil). 
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5.6. Discussion about Stability of Least Squares Solution 

In Section 2.4 it is argued that the stability of abundance estimation is affected by 

the eigenvalues of the correlation matrix, R , of endmember spectra. To obtain a stable 

least squares solution of abundance estimation, an ill-conditioned R  matrix, or an 

extremely small eigenvalue of R  matrix, should be avoided. The condition number is 

utilized to measure the ill-condition of the correlation matrix R . The condition number, 

)(RCN , of the correlation matrix R  is computed in equation (2.31), and it is always 

greater than or equal to 1. A larger condition number indicates a matrix closer to the ill-

condition. It is also argued that the ill-conditioned R  matrix, or the extremely small 

eigenvalue of R , could be avoided by using appropriate feature extraction approaches, 

particularly the feature extraction method based on the DWT. 

To further support these arguments, the eigenvalues, iλ , and the condition 

number, )(RCN , of the correlation matrix, R , of the endmember spectra are calculated 

for the three sets of experiments. The results are summarized in Tables 5.5, 5.6, and 5.7 

for Experiments I, II and III, respectively. Note that the DWT-, PCA- and DCT-based 

features utilized in the experiments are all optimal features determined in the system 

training phase, as discussed in Sections 5.2-5.4.  The calculations of iλ  and )(RCN  are 

all based on using these optimal features and the testing data sets of hyperspectral signals.  

In general, for all the three experiments, using the DWT-based features avoids the 

extremely small eigenvlaues of the correlation matrix of the endmember spectra, and 

greatly reduces the condition number of the correlation matrix, as compared to using the 

original hyperspectral signal. For example, for Experiment I, the condition number, 
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)(RCN , is reduced from ~31 to ~13. For Experiment II, the condition number is reduced 

from ~112 to ~41. For Experiment III, the condition number is reduced from ~1518 to 

~68. Among all the three experiments, Experiment III of the three-endmember case has 

the largest condition number, which is because there exists a very small eigenvalue, 

0011.01 =λ , and the correlation matrix is close to an ill-condition matrix. 

 
Table 5.5. Experimental values of parameters in the theoretical analysis of abundance 

estimation, based on testing data set, for Experiment I (soybean vs. soil). 
  

λ1 0.0384 0.0759 0.0383 0.0382 
λ2 1.1735 1.0098 1.1731 1.1741 

CN(R) 30.5203 13.3026 30.6283 30.7062 
Tr[R-1] 26.8602 14.1644 26.9603 27.0051 

σο
2 5.55E-06 7.65E-04 2.49E-03 4.31E-04 

Γx 1.21E-02 5.67E-03 1.22E-02 1.21E-02 
(Γx)1/2 0.1099 0.0753 0.1106 0.1101 

Γxs 7.46E-05 5.42E-03 3.36E-02 5.81E-03 
(Γxs)1/2 0.0086 0.0736 0.1832 0.0763 

 
 
 

Table 5.6. Experimental values of parameters in the theoretical analysis of abundance 
estimation, based on testing data set, for Experiment II (soybean vs. grass). 

 
  ORG DWT PCA DCT 

λ1 0.0135 0.0456 0.0135 0.0041 
λ2 1.5210 1.8641 1.5205 1.4356 

CN(R) 112.2642 40.9038 112.6089 353.0108 
Tr[R-1] 74.4647 22.4798 74.7205 246.5956 

σο
2 6.5701E-06 4.60E-03 2.27E-03 4.10E-03 

Γx 0.0401 0.0296 0.0400 0.0315 
(Γx)1/2 0.2003 0.1721 0.2000 0.1775 

Γxs 0.0002 0.0517 0.0847 0.5052 
(Γxs)1/2 0.0156 0.2274 0.2910 0.7108 
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Table 5.7. Experimental values of parameters in the theoretical analysis of abundance 
estimation, based on testing data set, for Experiment III (soybean, grass vs. soil). 

 
  ORG DWT PCA DCT 

λ1 0.0011 0.0243 0.0008 0.0009 
λ2 0.0638 0.0971 0.0637 0.0635 
λ3 1.6817 1.6540 3.0000 3.0000 

CN(R) 1.52E+03 6.80E+01 2.03E+03 1.79E+03 
Tr[R-1] 9.19E+02 5.20E+01 1.22E+03 1.08E+03 

σο
2 3.87E-06 6.36E-04 1.75E-03 3.00E-04 

Γx 0.0180 0.0113 0.0210 0.0180 
(Γx)1/2 0.1340 0.1063 0.1448 0.1343 

Γxs 0.0012 0.0110 0.7138 0.1079 
(Γxs)1/2 0.0344 0.1050 0.8449 0.3285 

 

The use of the PCA- and DCT-based features does not help to reduce the 

condition number of the correlation matrix of the endmember spectra, as compared with 

the use of the original hyperspectral signals. On the contrary, the use of the PCA-based 

features increases the condition number for Experiment III of the three-endmember case, 

where a very small eigenvalue, 0008.01 =λ , occurs. The use of the DCT-based features 

dramatically increases the condition number for both Experiment II, where 0041.01 =λ , 

and Experiment III, where 0001.01 =λ . Note that in Sections 5.2-5.4 it is argued that the 

use of the PCA- and DCT-based features provides the potential to reduce the 

computational cost of abundance estimation, though it does not help to improve the 

abundance estimation performance. However, based on the experimental results about the 

eigenvalues and condition number of correlation matrix of the endmember spectra in this 

section, it has to be argued that the reduction of computational cost from using the PCA- 

and DCT-based features comes with a loss of stability of the abundance estimation.  
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On the other hand, however, the use of the DWT-based features has all the 

advantages: (i) the improvement of the abundance estimation; (ii) the reduction of 

computational cost of the abundance estimation; (iii) the improvement of the stability of 

abundance estimation.  

 
5.7. Discussion about Assumptions in Mathematical Derivations  

of Abundance Estimation 

In Section 2.1, equation (2.10) defines a mean square error (MSE), xΓ , of 

abundance estimation,  












=Γ

M
ee

E x
T

x
x

rr

.                                                     (5.6) 

In Section 2.2, xΓ  is further derived as equation (2.14) without any assumption,  

[ ]o
T

x RAATr
M

++=Γ )(1 .                                             (5.7) 

In Section 2.3, given Assumptions 2.1.1 and 2.4, xΓ  is further simplified as equation 

(2.25),  

[ ] 211
oxs RTr

M
σ−=Γ .                                                (5.8) 

This simplified expression shows that the MSE of abundance estimation is uniquely 

determined by the two parameters: correlation matrix R  (or more specifically ][ 1−RTr ) 

and variance 2
oσ , for given number of endmembers, M . As discussed in Section 2.3, the 

use of the simplified version of MSE, xsΓ , provides a further insight into how the 

abundance estimation performance can be improved by using appropriate feature 
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extraction approaches to reduce the within-endmember variance and increase the 

between-endmember variance. Unfortunately, however, in order to use the simplified 

version, xsΓ , Assumptions 2.1.1 and 2.4 have to hold.  

To verify the appropriateness of the assumptions, the values of ][ 1−RTr , 2
oσ , xΓ  

and xsΓ  are quantitatively calculated for Experiments I, II and III. xΓ  is calculated using 

equation (2.14) or (5.7), and xsΓ  is calculated using equation (2.25) or (5.8). The results 

are also summarized in Tables 5.5, 5.6 and 5.7 for Experiments I, II and III, respectively. 

Note that among the uses of the three types of features and the original hyperspectral 

signals, only the use of the DWT-based features produces the close values of xΓ  and xsΓ . 

This observation shows that Assumptions 2.1.1 and 2.4 for deriving the simplified MSE 

expression, xsΓ , are appropriate when using the DWT-based features. That is, the values 

of variance 2
oσ  listed in Tables 5.5-5.7, corresponding to the use of original 

hyperspectral signals, the PCA- or DCT-based features, are not accurate. In other words, 

it is meaningless to compare those values of variance 2
oσ .  

Recall that equation (2.30) builds a relationship between ][ 1−RTr  and the 

eigenvalues iλ  of correlation matrix R , 

∑
=

− =
M

i i

RTr
1

1 1][
λ

.                                                      (5.9) 

From the experiment results in Tables 5.5-5.7, clearly it can be seen how the value of 

][ 1−RTr  is affected by the eigenvalues iλ . Taking the results of Experiment III as an 
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example, the two eigenvalues, 2λ  and 3λ , are comparable for the use of the three types of 

features and the original hyperspectral signals. However, as for a third eigenvalue, 1λ , the 

DCT-based feature has a very small value, 0001.01 =λ , thus correspondingly a very 

large value of ][ 1−RTr  is produced.  

Since the assumptions for deriving the simplified expression, xsΓ , are valid when 

using the DWT-based feature, it is interesting to compare experiment results in Tables 

5.5-5.7 for the DWT case among the three experiment cases. First of all, note that the 

values of 2/1)( xsΓ , or 2/1)( xΓ , are ~0.07, ~0.2 and ~0.11 for Experiments I, II and III, 

respectively. They are close to the RMSE values obtained from the experiments in 

Sections 5.2, 5.3 and 5.4, where the RMSE values using the ULSE method are ~0.1, 

~0.18, ~0.12 for the three experiments, respectively. This observation matches the 

discussion about the relationship between the RMSE evaluation metric and the square 

root value of xΓ  in Section 4.3. That is, the RMSE is an approximation of the square root 

value of xΓ  for limited number of samples.  

Secondly, note that for Experiment I, II and III, the values of ][ 1−RTr  are ~14, 

~22 and ~52, and the values of 2
oσ  are ~0.0008, ~0.004 and ~0.0006, respectively. 

Recall that in Chapter II it is argued that ][ 1−RTr  reflects a between-endmember variance 

to a certain extent, and a small value of ][ 1−RTr  indicates a large between-endmember 

variance. 2
oσ  is a within-endmember variance. A better abundance estimation (or a 

smaller MSE of abundance estimation) results from a smaller within-endmember 
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variance and a larger between-endmember variance. Based on these arguments, note that 

for Experiment I and III cases, the values of ][ 1−RTr  are ~14 and ~52, and the values of 

2
oσ  are ~0.0008 and ~0.0006, respectively. This means that Experiment I case has a 

similar within-endmember variance to Experiment III case, but a larger between-

endmember variance than Experiment III case. Thus, Experiment I case has a smaller 

MSE of abundance estimation than Experiment III case, even taking into account the 

difference of factor 
M
1  in equation (5.8), i.e., 2=M  for the two-endmember case and 

3=M  for the three-endmember case.  

In summary, the experimental analyses in this section further show the advantages 

of using the wavelet-based pre-processing and feature extraction for improving the LSE 

of abundances.   

 
5.8. Discussion about Alternative DCT and PCA Features 

In Section 4.1, it is argued that the conventional method for DCT- and PCA-based 

feature extraction is simply the use of the first few transform coefficients. The 

conventional method works well when goal is signal representation, such as the case of 

signal compression. However, when the goal is signal classification, such as the case of 

endmember abundance estimation, differences between signals take on importance, and 

simply using the first few large-amplitude coefficients may not be adequate. Therefore, 

an alternative approach is proposed for selecting a subset of transform coefficients. This 

alternative approach utilizes a sliding window of size L  to select coefficient subsets of 

size L . 
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In this section, the endmember abundance estimation based on the alternative 

DCT- and PCA-based features is implemented for the same three sets of experiments, as 

a comparison with the use of the conventional DCT- and PCA-based features. Four 

different window sizes are investigated in this study. For the alternative DCT-based 

features, the four window sizes are 5, 10, 50, and 100. For the alternative PCA-based 

feaures, note that in Experiment I the absolute differences of PCA coefficients for 

soybean and soil are less than 1210−  after the 20th PCA coefficient. Thus, only the first 20 

PCA coefficients are investigated for the alternative feature extraction method in 

Experiment I. For the same reason, the first 20 and 30 PCA coefficients are investigated 

in Experiments II and III, repectively. Based on these observations, the four window sizes 

investigated for the alternative PCA-based features are 2, 3, 4, and 5. Optimal feature sets 

are firstly selected through the system training, and then are quantitatively evaluated 

during the system testing.  

Based on the training data sets, the CLSE of endmember abundances are 

implemented using the alternative PCA- and DCT-based features, and the RMSE of 

abundance estimation is calculated. The RMSE value is utilized as the criterion of 

selecting the optimal feature sets. Two optimal parameters are recorded for the optimal 

feature sets. One is the window size, and the other is the window shift. 

Figures 5.22 shows the training results from the use of the alternative DCT-based 

features in Experiment I. The smallest RMSE is obtained when the window size is 5 and 

the window shift is 13. That is, the optimal feature set consists of the DCT coefficients 

from the 66th to the 70th coefficients, which are a set of high-frequency DCT coefficients. 
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Note that the use of this set of optimal DCT-based features results in a better CLSE of 

endmember abundances than the use of the conventional DCT-based features or the use 

of the original hyperspectral signals.  That is, the use of certain sets of high-frequency (or 

detailed) DCT coefficients improves the endmember abundance estimation. This is 

similar to the use of the detailed DWT coefficients. These results show that features 

based on optimal signal approximations are not necessarily good features for improving 

the endmember abundance estimation. Many other features, such as features based on 

high-frequency DCT coefficient subsets and DWT detail coefficient subsets, have abilites 

to improve the endmember abundance estimation.  

Figures 5.23 shows the training results from the use of the alternative PCA-based 

features in Experiment I. The smallest RMSE is obtained when the window size is 3 and 

the window shift is 0. Note that this is the same result as the use of conventional PCA-

based features. These results show that features formed by simply using the subsets of 

PCA coefficients does not help for improving the endmember abundance estimation, 

except for reducing the dimensionality of hyperspectral signals and thus the 

computational expenses. 

Similar training results are obtained in Experiments II and III. Figures 5.24 and 

5.26 show the training results from the use of the alternative DCT-based features in 

Experiments II and III, respectively. Figures 5.25 and 5.27 show the training results from 

the use of the alternative PCA-based features in Experiments II and III, respectively. The 

optimal window parameters are recorded in Table 5.8.    
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Figure 5.22. RMSE of abundance estimation based on training  

data set when using the sliding window method for  
DCT-based feature extraction in Experiment I. 
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Figure 5.23. RMSE of abundance estimation based on training  

data set when using the sliding window method for  
PCA-based feature extraction in Experiment I. 
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Figure 5.24. RMSE of abundance estimation based on training  

data set when using the sliding window method for  
DCT-based feature extraction in Experiment II. 
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Figure 5.25. RMSE of abundance estimation based on training  

data set when using the sliding window method for  
PCA-based feature extraction in Experiment II. 
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Figure 5.26. RMSE of abundance estimation based on training  

data set when using the sliding window method for  
DCT-based feature extraction in Experiment III. 

  

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

R
M

S
E

Window Shift

(a) Window Size=2

0 2 4 6 8
0

0.2

0.4

0.6

0.8

R
M

S
E

W indow Shift

(b) Window Size=3

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

R
M

S
E

Window Shift

(c) Window Size=4

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

R
M

S
E

W indow Shift

(d) Window Size=5

 
Figure 5.27. RMSE of abundance estimation based on training  

data set when using the sliding window method for  
PCA-based feature extraction in Experiment III. 
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Table 5.8. Optimal window parameters when using the sliding  
window method for DCT- and PCA-based feature  

extraction in Experiment I, II and III. 
 

    Window Size Window Shift 
Experiment I DCT 5 13 

  PCA 3 0 
Experiment II DCT 100 3 

  PCA 4 0 
Experiment III DCT 50 1 

  PCA 3 0 
 

Based on the testing data sets, the CLSE of endmember abundances are 

implemented using these optimal feature sets. The CLSE results are quantitatively 

evaluated by using two metrics: the RMSE of abundance estimation and the confidence 

of abundance estimation. For DCT-based features, the RMSE results are shown in Figure 

5.28, 5.30 and 5.32, for Experiment I, II and III, respectively.  The confidence curves of 

the CLSE of abundances for the three sets of experiments are shown in Figure 5.29, 5.31 

and 5.33, respectively. Clearly, it can be seen that using the alternative DCT-based 

features results in better abundance estimation than using the conventional DCT-based 

features, which are based on optimal signal approximation, and the original hyperspectral 

signals. Also note that while the use of the alternative DCT-based features improves the 

endmember abundance estimation, the DWT-based features still perform better than the 

alternative DCT-based features.  

As for PCA-based features, since the same optimal feature sets are obtained from 

using the conventional and alternative feature extraction methods, the testing results are 

the same for both cases and available in Sections 5.2, 5.3 and 5.4. 
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Figure 5.28. RMSE of abundance estimation based on testing data set for  
comparison of the conventional and alternative DCT features  

in Experiment I (soybean vs. soil). 
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Figure 5.29. Confidence of abundance estimation based on testing data set  
for comparison of the conventional and alternative DCT features  

in Experiment I (soybean vs. soil). 
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Experiment II
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Figure 5.30. RMSE of abundance estimation based on testing data set for  
comparison of the conventional and alternative DCT features  

in Experiment II (soybean vs. grass). 
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Figure 5.31. Confidence of abundance estimation based on testing data set  
for comparison of the conventional and alternative DCT features  

in Experiment II (soybean vs. grass). 
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Experiment III
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Figure 5.32. RMSE of abundance estimation based on testing data set for  
comparison of the conventional and alternative DCT features  

in Experiment III (soybean, grass vs. soil). 
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Figure 5.33. Confidence of abundance estimation based on testing data set  
for comparison of the conventional and alternative DCT features  

in Experiment III (soybean, grass vs. soil). 
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CHAPTER  VI 
 

CONCLUSIONS 
  

 
 This dissertation provides a complete investigation on how the use of the 

appropriate features can benefit the linear spectral unmixing using hyperspectral signals. 

Both experimental verification and theoretical analysis are reported in the dissertation. 

The feature extraction is proposed as a pre-processing step before the linear spectral 

unmixing. It is proven that this pre-processing step is a key to improving the performance 

of the linear spectral unmixing, specificially the least squares estimation (LSE) of 

endmember abundances.  

The use of appropriate features extracted from the hyperspectral endmember 

signals provides a potential to increase the separability among the endmember spectra, 

which is a fundamental reason for improving the LSE of endmember abundances. The 

separability is typically measured by the within-endmember variance and between-

endmember variance. Specifically, the endmember separability is increased when the 

within-endmember variance is reduced and/or the between-endmember variance is 

increased. In the target detection and classification applications, it has been proven that 

the use of the appropriate features, such as the discrete wavelet transform (DWT) based 

features, extracted from the hyperpsectral signals, can reduce the within-class variance 

and increase the between-class variance [5-6, 39-41]. As a result, the class separability is 

increased and the classification performance is improved. Motivated by the successful
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applications of the feature extraction to the target detection and classification using the 

hyperspectral signals, the dissertation investigates the potential of the feature extraction 

technique in the linear spectral unmixing applications using the hyperspectral signals. 

The results show that the linear spectral unmixing using hyperspectral signals is another 

successful application of the feature extraction technique. 

Feature extraction based on the DWT is the primary focus in this dissertation, 

since it has been successfully applied to target detection and classification using 

hyperspectral signals. Based on the DWT-based feature extraction, a linear unmixing 

system is designed specially for the abundance estimation of endmembers. The system 

utilizes the DWT for the feature extraction, which is also referred to as a pre-processing 

step before the linear spectral unmixing. In this study, a DWT-based feature set consists 

of the DWT detail or approximation coefficients at a specific DWT scale. Based on the 

DWT-based features, at the linear unmixing step the system utilizes the constrained LSE 

(CLSE) for the abundance estimation of endmembers. The use of the CLSE method 

makes the abundance estimation results physically meaningful. The abundance estimation 

results are quantitatively evaluated to show whether or not and to how much extent the 

pre-processing based on the feature extraction improves the performance of abundance 

estimation. The quantitative evaluation metrics used in the dissertation are: (i) the root 

mean square error (RMSE) of the abundance estimation; (ii) the confidence of the 

abundance estimation; and (iii) the abundance distribution diagram.   

Based on the proposed DWT-based linear unmixing system, three sets of 

experiments are designed and implemented to quantitatively evaluate the proposed DWT-
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based features. Experiment I investigates a two-endmember linear unmixing problem and 

the endmembers consist of a vegetation (soybean) and a non-vegetation (soil). 

Experiment II investigates another two-endmember linear unmixing problem and the 

endmembers consist of two vegetations (soybean and grass). Experiment III investigates 

a multi-endmember linear unmixing problem and the endmembers include two 

vegetations (soybean and grass) and a non-vegetation (soil).  

Results from the three sets of experiments show that generally the use of the 

proposed DWT-based features reduces the average deviation of abundance estimation by 

30-50%, as compared with the use of the original hyperspectral signals without the pre-

processing. Moreover, with a 95% confidence of abundance estimation, the average 

estimation deviation from the true abundance is ~0.1, ~0.275, and ~0.175 for 

Experiments I, II and III, respectively, when using the DWT-based features. However, 

when using the original hyperspectral signals without the pre-processing, with the same 

confidence the average deviation is ~0.2, ~0.425, and ~0.225 for Experiments I, II and 

III, respectively. The abundance distribution diagrams for the three sets of experiments 

also show that the abundance estimation results from the use of the DWT-based features 

have a much closer distribution to the true abundances than the abundance estimation 

results from the use of the original hyperspectral signals without pre-processing. These 

results show a great potential of using the DWT-based feature extraction and pre-

processing for improving the LSE of endmember abundances.  

Realizing these promising experiment results, the dissertation further investigates 

the underlying fundamental reasons leading to these results. Based on the linear mixture 
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model (LMM) and the LSE method, a series of theoretical analyses are derived to reveal 

the fundamental reasons why the use of the appropriate features, such as the DWT-based 

features, can improve the LSE of endmember abundances. Under some reasonable 

assumptions, the dissertation builds a mathematical relationship among the mean square 

error (MSE) of the abundance estimation, the between-endmember variance, and within-

endmember variance. In the mathematical relationship, the between-endmember variance 

is indicated by the correlation matrix of endmmeber spectra, and the within-endmember 

variance is a weighted sum of each endmember variance. That is, the MSE of the 

abundance estimation is uniquely determined by the correlation matrix and variances of 

endmember spectra. The MSE of the abundance estimation can be decreased through 

reducing the correlation of endmember spectra, i.e., consequently increasing the between-

endmember variance, and reducing each endmember variance. In other words, the 

abundance estimation performance can be improved through increasing the endmember 

separability.  

The stability of the least square solution of the abundance estimation is also 

theoretically analyzed using the concept of the condition number. A smaller condition 

number of the correlation matrix of endmember spectra indicates a more stable least 

square solution of the abundance estimation. The experiment results from the three sets of 

experiments show that the condition numbers are greatly reduced when using the DWT-

based features extracted from the original hyperspectral signals of endmembers. That is, 

the use of the DWT-based features not only improves the abundance estimation of 
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endmembers, but also leads to a more stable LSE of endmember abundances, as 

compared to the use of the original hyperspectral signals.    

Features based on the principal components analysis (PCA) and the discrete 

cosine transform (DCT) are also investigated for a comparison with the DWT-based 

features. Firstly, PCA- and DCT-based features are formed utilizing the first few 

transform coefficients. This is a conventional feature extraction method that is based on 

the optimal signal representation. The same three sets of experiments are performed on 

the conventional PCA- and DCT-based features. The experiment results show that the use 

of the conventional PCA- and DCT-based features does not help to improve the 

abundance estimation at all, other than reducing the dimensionality of hyperspectral 

signals and thus reducing the computational cost of the abundance estimation. However, 

the dimensionality reduction resulting from the use of the conventional PCA- and DCT-

based features does come with a loss of stability of the abundance estimation. The 

comparison results show that the use of the DWT-based features has all the advantages: 

(i) the improvement of the abundance estimation; (ii) the dimensionality reduction of 

hyperspectral signals and the reduction of computational cost of the abundance 

estimation; and (iii) the improvement of the stability of abundance estimation. 

An alternative method is also investigated for PCA- and DCT-based feature 

extraction. Rather than using only first few coefficients as features, the alternative 

method utilizes a sliding window of size L  to extract other subset coefficient features of 

size L . Experimental results show that the use of the subset features of high-frequency 

DCT coefficients can improve the endmember abundance estimation. In general, when 
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dealing with hyperpsectral signals, traditionally the dimensionality reduction has been 

based on methods that provide superior energy compaction, such as PCA and DCT. The 

reduction of dimensionality has stemmed from the use of only the first few transform 

coefficients. The approach works well when the aim is signal representation, such as the 

case of signal compression. However, this approach may be misguided when the aim is 

signal classification, which is also the aim of spectral unmxing. In this case, differences 

between signals take on importance, and simply using the first few large-amplitude 

transform coefficients may not be adequate. Therefore, there is a great need for the 

remote sensing community to investigate feature extraction methods that are based on 

signal classification for linear unmixing problems. For the same reason, the DWT-based 

approach is proposed in this dissertation for linear unmixing of hyperspectral signals.   

Four aspects of future work are recommended: (i) to investigate other advanced 

feature extraction techniques; (ii) to investigate other mother wavelets, as well as the 

multi-channel DWT and the wavelet packets [58, 59]; (iii) to investigate the applications 

of the proposed DWT-based linear unmixing system to the two-dimensional 

hyperspectral images; and (iv) to investigate the weighted least squares technique [21, 

22] based on the feature extraction for the endmember abundance estimation. 

  The pre-processing based on the feature extraction plays a key role in the 

proposed linear unmixing system using the hyperpsectral signals. In the dissertation, 

features based on the DWT, PCA and DCT are extracted and investigated. For each of 

them, only one feature extraction method is proposed. It is shown that the proposed 

DWT-based feature extraction method is successful in improving the abundance 
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estimation performance, but the proposed PCA- and DCT-based feature extraction 

methods do not provide good features for improving the abundance estimation. Based on 

the theoretical analysis in the dissertation, any feature set that increases the endmember 

separability can be a good feature set for improving the abundance estimation 

performance. Thus, it will be interesting to investigate other advanced feature extraction 

methods based on not only the DWT, PCA, DCT but also other techniques in the future.  

For the DWT-based feature extraction, only one mother wavelet, the Haar mother 

wavelet, is investigated in the dissertation. Since there exist many other mother wavelets, 

it will be interesting to investigate the DWT-based features using other mother wavelets 

in the future. Moreover, in this study only the dyadic (or two-channel) DWT 

implementation is investigated. Since the multi-channel DWT could provide a more 

complete multiresolution analysis of signals, it could be worthwhile to investigate feature 

extraction based on the multi-channel DWT in the future. Note that the DWT implements 

an iterative decomposition of only signal approximations. Wavelet packet (WP) 

technique [58, 59] provides an iterative decomposition of both signal approximations and 

signal details.  Feature sets could be obtained from optimal WP trees. Thus, it will also be 

interesting to investigate the WP for hyperspectral feature extraction in the future. 

The proposed DWT-based linear unmixing system is evaluated on the one-

dimensional hyperspectral signals in the dissertation. However, the proposed system is 

generic and can be utilized to implement the linear unmixing analysis based on two-

dimensional hyperspectral images. Working on the one-dimensional hyperspectral 

signals, only the spectral information is utilized for the feature extraction. However, both 
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spectral and spatial information can be utilized for the feature extraction when working 

on the two-dimensional hyperspectral images. Thus, it will be interesting to investigate 

the applications of the proposed DWT-based linear unmixing system to the two-

dimensional hyperspectral images in the future. 

The LSE based on the feature extraction is investigated for the endmember 

abundance estimation in the dissertation, where each feature is treated equally when the 

least squares criterion is applied. However, it is possible to treat each feature differently 

according to its importance to the LSE. That is, based on a priori information, larger 

weights are assigned to the features that could have larger effects in reducing the LSE 

error. As a result, the LSE error could be further reduced, as compared to treating each 

feature equally. This is a process of the feature optimization. According to the LMM of 

equation (1.1), since weighted features of endmember and mixed-pixel spectra lead to 

weighted errors, this is also a process of the weighted LSE (WLSE). Therefore, it will be 

interesting to investigate the WLSE based on the feature extraction for the endmember 

abundance estimation in the future. 
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APPENDIX  A 
 

PROOF OF EXISTENCE OF 1)( −AAT  IN EQUATION (2.7) 
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Theorem: The inverse of the auto-correlation matrix AAR T=  exists if and only 

if the column vectors in matrix A  are linearly independent. 

Proof:  If the column vectors in matrix A  are linearly independent, then for all 

non-zero vectors, b
r

, there exists 0
rr

≠bA , and thus, 

0)()(
2

>= bAbAbA T
rrr

.                                           (A.1) 

where ⋅  is referred to as a vector norm. Note that, 

)()( bAbAbAAbbRb TTTT
rrrrrr

== ,                                     (A.2) 

that is, for all non-zero vectors, b
r

, there exists 0>bRb T
rr

. Therefore, the real symmetric 

matrix R  is positive definite, according to the necessary and sufficient condition for a 

real symmetric matrix R  to be positive definite [19]. For a positive definite matrix R , 

there exists, 

0][ >RDet ,                                                        (A.3) 

where ][⋅Det  represents an operation of matrix determinant. Since the determinant of 

matrix R  is non-zero, the inverse of matrix R  exists.  

If the column vectors in matrix A  are linearly dependent, then there exists a non-

zero vectors, ob
r

, such that 0
rr

=obA . Thus, there exists, 

0
rrr

== oo
T bRbAA ,                                                   (A.4) 

for a non-zero vectors, ob
r

. That is, the column vectors in matrix R  are linearly 

dependent. Therefore, matrix R  is not full rank, i.e., matrix R  is not invertible. 
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APPENDIX  B 
 

DERIVATION OF EQUATION (2.14) 
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Rewriting equations (2.12) and (2.13) as,  

o
TT

x eAAAe rr 1)( −= ,                                                     (B.1) 

[ ]][1
x

T
xx eeTrE

M
rr

=Γ ,                                                   (B.2)  

and substituting equation (B.1) into equation (B.2), we have, 

[ ]
[ ]

[ ]])([1     

)]()[(1     

][1

o
TT

o

o
T

o

x
T

xx

eAAeTrE
M

eAeATrE
M

eeTrE
M

rr

rr

rr

++

++

=

=

=Γ

,                                           (B.3) 

where TT AAAA 1)( −+ =  is defined as a pseudo-inverse of matrix A . Utilizing the 

property of the matrix trace operation: given any two matrices, U  and V , there exists, 

][][ VUTrUVTr = ,                                                       (B.4) 

equation (B.3) can be further derived, as equation (2.14) as, 

[ ]
[ ]
[ ]o

T

T
oo

T

T
oo

T
x

RAATr
M

eeEAATr
M

eeAATrE
M

++

++

++

=

=

=Γ

)(1     

][)(1     

])[(1

rr

rr

  .                                         (B.5) 

where ][ T
ooo eeER rr

=  is a correlation matrix of random measurement error vector oer . 



www.manaraa.com

 

135 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX  C 
 

DERIVATION OF EQUATIONS (2.22) AND (2.27) 
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Starting with equation (2.19),  

oAo xe rr
∆= ,                                                        (C.1) 

where vector T
oMooo xxxx ],,,[ 21 L

r
=  represents true abundances of endmember spectra, 

as defined in equation (1.3), and matrix ],,,[ 21 MA δδδ
r

L
rr

=∆  represents the differences 

between the library endmember spectra and the true endmember spectra constituting the 

mixed-pixels, then the correlation matrix of oer  can be computed as, 

∑∑

∑∑

= =

==

=
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






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Exx

xxE

xxEeeE

1 1

11

][               

               

])([][

δδ

δδ

rr

rr

rrrr

,                                     (C.2) 

where the thi  column vector, T
iNiii ],,,[ 21 δδδδ L

r
=  (for Mi ,,2,1 L= ), in matrix A∆  

represents the difference between the thi  library and true endmember spectra, where M  

is the number of endmembers and N  is the number of spectral bands.  

Based on Assumptions 2.3.1, 2.3.2 and 2.3.3, we have, 

0][ =T
kiE δδ
rr

,  for ki ≠ .                                         (C.3) 

Therefore, in equation (C.2), only terms for ki =  left, that is, 

∑
=

=
M

i

T
iioi

T
oo ExeeE

1

2 ][][ δδ
rrrr .                                            (C.4) 

Based on Assumptions 2.3.3, we have equation (2.21), i.e.,  
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Substituting equation (C.5) into equation (C.4), we have, 
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According to equation (2.16), we have, 



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Comparing equations (C.6) and (C.7), we can obtain equation (2.22),  

),,2,1(     ,
1

222 Njx
M

i
oiijoj L== ∑

=

σσ ,                                      (C.8) 

where M  is the number of endmembers and  N  is number of spectral bands. 

 Rewriting equation (2.26) as,  

Ii
T

ii
2][ σδδ =

rr
,                                                  (C.9) 

and substituting equation (C.9) into equation (C.4), we have,  

∑
=

=
M

i
ioi

T
oo IxeeE

1

22][ σrr .                                           (C.10) 
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According to equation (2.24), we have, 

IeeE o
T

oo
2][ σ=

rr ,                                                  (C.11) 

Comparing equations (C.10) and (C.11), we can obtain equation (2.27), 

∑
=

=
M

i
oiio x

1

222 σσ .                                                 (C.12) 

where M  is the number of endmembers. 
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DERIVATION OF EQUATION (2.25) 
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Rewriting equations (2.14) and (2.24) as, 

[ ]o
T

x RAATr
M

++=Γ )(1 ,                                               (D.1) 

IeeER o
T

ooo
2][ σ==

rr ,                                                 (D.2) 

where TT AAAA 1)( −+ =  is defined as a pseudo-inverse of matrix A , and substituting 

equation (D.1) into equation (D.2), we have, 

[ ] [ ]++++ ==Γ AATr
M

IAATr
M

T
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T
xs )(1)(1 22 σσ   ,                       (D.3) 

where xsΓ  is referred to as a simplified version of xΓ . Note that, 
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.                                  (D.4) 

Substituting equation (D.4) into equation (D.3), and utilizing the property of the matrix 

trace operation defined in equation (B.4), we can obtain equation (2.25), 
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where AAR T=  is an auto-correlation matrix of endmember spectra, as defined in 

equation (2.6). 
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DERIVATION OF EQUATION (2.30) 
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Staring with equation (2.29),  

TQQR Λ= ,                                                           (E.1) 

we have  

])[(])[(][ 11111 −−−−− Λ=Λ= QQTrQQTrRTr TT ,                        (E.2) 

where Q  is a matrix with each column being an eigenvector of R , and Λ  is a diagonal 

matrix with diagonal elements being eigenvalues of R . Utilizing the property of the 

matrix trace operation defined in equation (B.4), equation (E.2) can be further derived as, 

])([][ 1111 −−−− Λ= TQQTrRTr .                                           (E.3) 

Since Q  is an orthogonal matrix, there exists 1−= QQT  or IQQQQ TT == . Then we 

can have, 

IIQQQQ TT === −−−− 1111 )()( ,                                         (E.4) 

where I  is an identity matrix. Substituting equation (E.4) into equation (E.3), we can 

obtain equation (2.30), 

∑
=

−− =Λ=
M

i i

TrRTr
1

11 1][][
λ

,                                              (E.5) 

where M  is the number of endmembers and iλ  are M  distinct eigenvalues of R . 
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APPENDIX  F 
 

DERIVATION OF EQUATIONS (2.39) AND (2.40) 
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Staring with the normal equation (2.38),  

dxR LS

rr
= ,                                                          (F.1) 

and supposing that there is a disturbance, d
r
r

δ , existing in the cross-correlation vector, d
r

, 

which results in an error, 
LSxr

r
δ , of the least squares solution, LSxr , then we have, 

dxLS dxR
LS

rr

rrrr δδ +=+ )( .                                             (F.2) 

Note that dxR LS

rr
= , then equation (F.2) can be further derived as, 

dxLS
R rr

rr
δδ = .                                                      (F.3) 

Since the inverse of R  exists, as proven in Appendix A, solving equation (F.3) for 
LSxr

r
δ , 

we obtain, 

dx R
LS

rr

rr
δδ 1−= .                                                     (F.4) 

According to equation (2.33), we have, 

zRzR rr
≤ .                                                      (F.5) 

Utilizing equation (F.5), from equation (F.4), we can derive, 

ddx RR
LS

rrr

rrr
δδδ 11 −− ≤= ,                                         (F.6) 

and from equation (F.1), we can derive, 

LSLS xRxRd rrr
≤= .                                               (F.7) 

Multiplying equations (F.6) by (F.7) and rearranging terms, we obtain equation (2.39), 

 
d

RCN
d

RR
x

dd

LS

xLS
r

r

r

r

r

r
rrr δδδ

)(1 =≤ − .                                     (F.8) 
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Suppose that there is a disturbance, Rδ , existing in the auto-correlation matrix, 

R , which results in an error, 
LSxr

r
δ , of the least squares solution, LSxr , then we have, 

dxR
LSxLSR

rrr
r =++ ))(( δδ .                                             (F.9) 

Note that dxR LS

rr
= , then equation (F.9) can be further derived as, 

LSLS xRLSRx xR rr

rrr
δδδδ −−= .                                            (F.10) 

Ignoring the second-order term, 
LSxR r

r
δδ , and solving equation (F.10) for 

LSxr
r

δ , we obtain, 

LSRx xR
LS

rr
r δδ 1−−= .                                                  (F.11) 

Again, utilizing equation (F.5), from equation (F.11), we can derive, 

LSRLSRLSRx xRxRxR
LS

rrrr
r δδδδ 111 −−− ≤=−= .                      (F.12) 

Rearranging terms in equation (F.12), we obtain equation (2.40), 

R
RCN

R
RR

x
RR

LS

xLS δδδ
)(1 =≤ −

r

r
r

.                                   (F.13) 

In equations (F.8) and (F.13), 1)( −= RRRCN , as defined in equation (2.31), is referred 

to as the condition number of matrix R . 
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